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outline

Statement of intent:

® this is about calculating radiative corrections not looking at radiative corrections
® no plots (with one exception)

® no motivational blah blah (if you're not convinced computing radiative corrections is
important, there is still time to leave)

® discuss explicit example gg — g at one-loop in general context
® no technical details, but explain outline/structure of calculation

® because this is PreSUSY, more emphasis than usual on scheme dependence (SUSY
preserving regularization)
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introduction

gg — qq at tree-level

gg — gq at one-loop

beyond strict one-loop

e None

e matrix element squared

e from matrix element to physical cross section

e overview / singularities
e virtual corrections
e real corrections

e scheme dependence and assemble

e structure of two-loop calculation
e resummation of (large) logarithms
e parton showers

e current state-of-the art
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tree level

y_ P

O
4

Compute matrix element squared M (0) = 4(0) A(0) =

Y

g(p1) q(ps) (v ] q(ps) a(ps)
9(p2) 4 7(pa !
_ ) S _ i) (o0 a(p)
~ (T T2),.;, ~ (T*2T),. ~ (TT2)5 5y — (T2 )4,
colour:
A = (e )i3 i4A12(87 t,u) + (12T )i3 iq A21(s, t,u)
N2 — 1 2 N2 — 1 * *
M) — ( ZN ) (|A12|2 + |A21|2) — % <A12 Az + A7, A21)
C C
& ~ / H/_/
leading colour subleading colour

Structure of (sub)amplitude: Ay = ta(p3)vg(pa)e” (p1)e” (p2) (apv) g
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tree level

DA ]
A [ 4
squaring the amplitude .
+ 7
¥: }
g ntp” ...
conventional:
n*p? + K v n2ptp?
Zs,u,(pi)ey*(pi)é_guv%_ i P; p; 1 o 'z,pzp;; Zua(p)aﬁ(p):(zj+m)aﬁ;
o . (nip;) (nipi) S

ntt arbitrary
QED: can drop n* parts, since p’?’f/4 ayy =0

QCD: pg”/4 auy # 0, but result independent of n§/4.

alternatively, drop n* parts but include ghost diagrams in squaring the amplitude.

In D dimensions we get (including mass terms) e.g.
_2&3
52¢2

la12]|? = (D —=2)t(s+1¢) (D — 2)s% + 4st + 4t2) + 16m*s? + 16m?st(s + t))
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tree level

helicity method: (massless quarks)

fix helicities of external particles and express amplitude in terms of spionor inner products:

(i7) = (ps — |pj+) = @(ps, —)ulpj, +);  [ij] = (pi + |pj—) = u(ps, +)ulpj, —) ) ;

+ |[yH#|n+E
for gauge bosons use ¥ (p, +) = + p £ [y |nt)
V2(n T [p£)
® lightlike reference momentum n# drops out for gauge invariant quantities
_ o , 13)3(14
® very compact results, e.9: a12(gy , 95 , 495 G, ) = ig” <12><<23>> <<34>><41>

® simplifications (due to gauge cancellations) at amplitude level

® sum over all (non-vanishing) helicity configurations
2_5: hi _h2 _h3 -hgy|2
‘a12| — ‘CL12(91 y9o " 5,437 5,4y )‘
hj

® have to treat external particles in 4 dimensions (scheme dependence — see later)
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tree level
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hadronic cross section

|-

A0 1y (Py) Hy (Py)—tt =
1 1
/ dr1 fg/H, (wl,uF)/ dx2 fg/my (T2, 0F) A0 g0, Py ) g(ws Py)—ti(Qs(BR) -+ 0) + o
0 0
- factorization scale; 1 r: renormalization scale

fq/m, (z1, pp): parton distribution functions

dé: hard partonic cross section, at tree level d5(?) = do(®)
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tree level

AR
A\ 14

il

hadronic cross section

|-

A0 1y (Py) Hy (Py)—tt =
1 1
/ dr1 fg/H, (wl,uF)/ dx2 fg/my (T2, 0F) A0 g0, Py ) g(ws Py)—ti(Qs(BR) -+ 0) + o
0 0
- factorization scale; 1 r: renormalization scale
fg/m, (1, pr): parton distribution functions

dé: hard partonic cross section, at tree level d5(?) = do(®)

there are additional partonic processes for H{ Ho — tt

1 1
Ao, Hy—tf = /Odaﬁlfg/ﬂl(%‘l)/o dr2 fo/m,(x2) dGgg 17

1 1
L3 /0 dzy fo 50, (1) /0 dwa fuyu, (22) d6 00 0+ {a < @)

qe{u’dﬁc7s7(b)}
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tree level

AR
A\ 14

hadronic cross section

il

|-

A0 1y (Py) Hy (Py)—tt =
1 1
/ dr1 fg/H, (wl,uF)/ dx2 fg/my (T2, 0F) A0 g0, Py ) g(ws Py)—ti(Qs(BR) -+ 0) + o
0 0
- factorization scale; 1 r: renormalization scale

fy/m, (@1, pp): parton distribution functions

dé: hard partonic cross section, at tree level d5(?) = do(®)

and even more partonic processes
for Hi Ho — JJ

P O G 4
e e
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one loop

Tree-level: d6(?) = o (9

1-|00p: da'(l) = dO'(O) _|_dO-Virt + dO.I'eal 4 do_coll
N~ N

7

~~

O(a3) O(ag)

All O(a?) are (in general) divergent and only the sum is finite (for properly defined, i.e.
infrared-safe observables).

Regularize divergences by working in D = 4 — 2e dimensions: /d4k — % /de;
singularities — poles 1/e (dimensional regularization).

Other possibilities in principle, but not in practice.

Strictly speaking, only internal momenta have to be D dimensional. There is some
freedom how to treat external particles (recall helicity method needs these to be 4
dimensional)

different schemes (variant of dimensional regularization) possible (this also impacts on
SUSY — later)
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one loop

AR
A 14

Virtual corrections
“measure of difficulty”

® number of external legs
® number of scales (masses, kinematic invariants)
® number of integration momenta in numerator

conventional solution
(in principle straightforward, in practice often very challenging to impossible)

® tensor integrals — scalar integrals (Passarino Veltman)

dPk kH kY
= ApHp” + Bgh"

fix A and B by contraction with p,,p, and g, .
® reduce pentagon (and higher-point) integrals to (sums of) box integrals
® plug in (known) box, triangle and bubble integrals and evaluate diagrams

problem: often huge expressions with numerical instabilities (Gram determinants)
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one loop

AR
A\ 14

On-shell methods
Write amplitude as

A =% (diI}’OX + ¢ I 4 b IPUP 1 ail,fa‘d) + rational

® identify coefficients of integrals by discontinuities 2 ImT; = (TTT) fi

® rational terms (i.e. non-log or Lis terms have to be obtained separately (e.g. recursion
relations or D-dimensioal cuts)

® often numerical approach, i.e. for given (numerical) momenta obtain 1/¢¢, i € {0,1,2}
coefficients of amplitude numerically

1 , :
(k= pi)2 0T — —2W25+<(k—pi)2) % d

propagators are now on-shell

— massive simplifications (gauge can-

cellations) /§> C%\
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one loop

y_ P

C
4

virtual corrections ’;Eg::* my m§»—

. TOTOT OO

do not (yet) include self-energy insertions on external legs (non-vanishing only for massive
particles in Dim Reg)

A=A 4 AW 4= MO = AP ~ a2 and M) = 2Re (AQ AW ) ~ ol
—— = S S

~NQg Nag

1

AL — (Te1T92) N

N, N
(76"4%2(8at7u) + A‘132(8?t7u) + 7FA{%(S7t7 U’))

13 14

+ {12 & 21}

1 N
+  Oigiy §Tr (T 792) (Atr(s,t, u) + VFAf;(S, t, u))

C
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one loop

y_ P

C
4

virtual corrections

® “result” of calculation

1 —s\ °© —t\ €
L _
Aw—z[% Ge) e () +

® UV singularities (1/¢ per loop) =—> renormalization

1 .
+ = mess(log) + finite mess(log?, Liz)
€

® soft and final-sate collinear singularities (1 /¢ per loop) = combine with real corrections
® soft-collinear singularities (1/¢ per loop) = combine with real corrections

® initial-sate collinear singularities (1 /¢ per loop) = combine with collinear counterterm
do.coll
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one loop

y_ P

C
4

renormalization
recall: |aj2|? = — =2 (D —2)t(s+1t) (D — 2)s? + 4dst + 4t2) + 16mgs? 4+ 16mast(s + t))
S

MS scheme: ag = Zo s = {1 — %C[‘ @] Qs
47 €
2 —€ 3
(8 m
on-shell scheme: mg = Z,,m = |1+ —cp Cp (—2> (—— — 4) m
A I €

expressed in terms of couterterm diagrams:

o T
' [ u + other diagrams

TOOO00 —>—— T ————— T T——O——
m . .
o \ u + other diagrams
00T 0 TTTTT T —O—— L R R —
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one loop
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O
4

virtual corrections

Y

S

for massless external particles, self-energy vanishes (in dim reg): —- only coupling
renormalization

for massive quarks: intermediate propagator 1/(p? — m?), but p? — m?.

massive quark: —iX(p?, m?) = (f — m) B(m?) + m A(m?) +. ..

wave func. ren mass ren

in on-shell scheme: ﬁ / VZq /

—> mass counterterms only in internal lines
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one loop

y_ P

O
4

renormalized virtual corrections: there is order in the apparent chaos; (a1 ...an) = (9,9, 9, q)

ozs 1
Mig.(a1-an) = e [Mésml an) (—;Zm*(ai))

+ZV(H R ( --an)+M1(\Ils)(a1"'a”)]’

[(1+e)I?(1—¢) (eWE ) —© ( €2 2 3 )
= (4n)° = — 1— O
T Um)" —Fa — 29 A - o)
1 i\ © _
V(i,j) = ——=Re (—S—”> for massless particles
2€2 'u2
M;js* :  colour “twisted” tree-level amplitudes
3C
Trs(q) = TF + Ors(€); ¥(Q)=Cr; 7rs(g) = ﬁo + Ors(€);
MSS? :  complicated but finite
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one loop

AR
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scheme dependence:

MSS)* (a1 an) = ;_;CF [MRS*(al .an) <__ Z’YRS* Q; >
+ ZV(Z 7) RS*( an) + M(l)(al an)]

® what precisely do we mean by e.g. M(?), 4 dimensional ? D dimensional ?

® no problem if M(1) is scheme dependent, but physical cross sections must be scheme
independent !

® if we deal with helicity methods, how to consistently treat external 4-dimensional particles ?

® Having D dimensional gluon breaks SUSY (gluon and gluino have different number of
degrees of freedom)

® Breaking a symmetry of a theory through regularization is not a disaster, but not very nice
either.
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introduction

AR
A\ 14

Breaking of SUSY (or any other symmetry) by regularization requires additional symmetry
restoring counterterms

® consider e.g. SUSY relation me = mg, at one-loop m?(1L) = m? — Z(p? = m?)

® incor: i o
me(1L) = e |14+ — (2Bg — 1)]
L 4
[ e 2
me(1L) = me |1+ — (2Bo + —)]
| 4m 3
® iNnDRED: me(1L) = mg(1L)
. . 5
® in cDR have to add additional counterterm: dmz = —43 7;';6
7

® DRED and FDH preserve SUSY (at least in this case)

PreSUSY 10, 19-21 Aug 2010 — p. 17/35



one loop
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scheme dependence:
Introduce three spaces: g (Quasi 4-dim) O g (Quasi D-dim) D g (Strictly 4-dim)

glwg/w = 4; g/wg/w = D; g'uygw/ =4
g*v g, P = gHP. gMvgLP = gttty §Hvg.P = ghP
® cDR (“conventional dimensional regularization"): Here internal and external gluons (and
other vector fields) are all treated as D-dimensional.

® Hv (“’t Hooft Veltman scheme"): Internal gluons are treated as D-dimensional but external
ones are treated as strictly 4-dimensional.

® DpRED (“original/old dimensional reduction"): Internal and external gluons are all treated as
guasi-4-dimensional.

® rDH (“four-dimensional helicity scheme"): Internal gluons are treated as
quasi-4-dimensional but external ones are treated as strictly 4-dimensional.

CDR  HV  FDH  DRED internal: in 1PI part of loop
internal gluon | gt gHtv  ghv ghv ( complication for real part! —- later)

external gluon | g*¥  gHtv  ghtv  gHY external: all others
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one loop

AR
A 14

scheme dependence: consistent use of DRED requires split g — g + g with
GGy =4 — D = 2¢, gMV§,P =GP, GHVGLP =

M](DRED(Q g;t,t) = Z{d} M](DOP>{ED(d1 ... dy)
— M](DOP){ED(gagataa + ngf){ED(ﬁag)t,E) + M](Z)OF){ED (§ E) + M](DRED (9 g,t, ﬂ
as . 1 o
Mgf){ED (a1...an) = Z [M](DRED (@1...an) <_Z Z'YDRED (ai)>

) 27T

+ S V(6 5) MZrpp (@1 - - dn) + MG (41 .an>].
,J

split is crucial for

® 7(9) =2Nc —Tr Nr # v(9)
® renormalization: gtt and gtt renormalize differently in QCD
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one loop

y_ P

C
4

renormalization

5ZDRED _ Qs CT (—11—|—€)NC—|—4TFNF
g A1 € §) ’

~ 1 3N

§zprED  _  Xs CT _ 2% LN Finite ) .
g in e \an. g THArip ek

® Finite is irrelevant since corresponding M (%) ~ O(e). We do not need to fix a
renormalization scheme for the gtt coupling

® there are O(e) terms in Z""P (even though we use the ms scheme), because we use
DRED and not CDR.

PreSUSY 10, 19-21 Aug 2010 — p. 20/35



one loop

AR
A\ 14

Real corrections
0 _
dofsy = Z/d¢3(p1>p2;p3,p4,p5)</\/ll(as)*(a1,a2;a3,a4,a5)>
a;

processes: Mg)s)* (g,9;t,t,g), but also new partonic channels /\/lg)s)*(q, g;t,t,q) etc.

calculation of Mg)s)* as for tree-level.

R e D

/\/lgg* has no 1/e poles, but has (non-integrable) singularities in some regions of phase space.

/dq)n—l MO — ZMa‘ppr —|—/d<I>n_1 ZMappr

sing sing
- >4

finite use dim reg
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one loop

AR
A 14

Real corrections naive example (e.g. gluon g soft, x ~ energy)

_ 0 1
A(g,g,t,t,g) g/‘\JO —A(g,g,t,f) 4 Arem
NG
t L ! rem
M(g’g’t’t’g) ~ _M(ng:t:{) + —M
T \/5

7

_ _ 1 1

A

~~ Vv

term 1 term 1

term 1: evaluate numerically in 4 dimensions, square root singularities !

1 1
term 2: /x_e —/d@%/\/l(g,g,t,f) = ——/dCI)g‘./\/l(g,g,t,f)
T €

there are several well established general procedures
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one loop

AR
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Real corrections, soft singularities
general structure of soft limit of matrix element squared:

—0

MY (a1, a5 gr(Pr) - - ant1) 7= g2 ZE:

Szksjk

S;ia . . ; .
/d@k Y ~ V(i,j) cancels corresponding virtual singularity
SikSjk

RS*(al .an)

(contains also soft collinear ¢||k and j||k singularities)

only scheme dependence in M%
CDR: D dimensional
DRED, HV, FDH: 4 dimensional
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one loop

AR
A\ 14

Real corrections, final-state collinear singularities
general structure of (two final state massless particles) collinear limit of matrix element squared:
pr — 2(px +p1) and pp — (1 — 2)(px + p1)

Mg)s)*(ala az;. .. C_Ll(pl) Ce C_Lk;(pk) . dn—l—l) pk:|pl

293 * 0
Skl Pélf){*s_)kl(z) M;S)* (a1,a2;. .. a(k:l)(pk +p1)...an)

scheme dependence M (9 and Péll;‘fikl(z)

jJ treat partons k£ and [ as internal

unitarity requires unresolved particles to be treated the
same in virtual and real contributions

internal: particles in 1Pl part of loop or unresolved
initial/final state particles

origin of «(a;) scheme dependence in real corrections

do NOT take P(iz()jfikz(z)b—% for Hv and/or FDH.

PreSUSY 10, 19-21 Aug 2010 — p. 24/35



one loop
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Altarelli-Parisi kernels
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one loop
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Real corrections, final-state collinear singularities

for cDR, HV and FDH;:

’YRS*(Q)|NC PYRS*(g)|NF

for DRED:

YDRED (Q)’Nc YpreD (9) Np YDRED (g)‘Nc péﬁ YDRED (g)‘NF %
’ ’ % ' %
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one loop

AR
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Real corrections, initial-state collinear singularities
general structure of collinear limit (of final-state to initial-state particle) of matrix element squared:

pr — (1 —2)p1 Pk llp1

(M (a1(p1),a2; ... Gk (pk) - Gnt1)) T

2 gg p< RS* M(O) .
o Dk e(2) Musi(eqr) (2p1), az;- - an))

scheme dependence M (%) and PS5O (2)
after (partial) phase-space integration

1 s CT 0
dU;esa*’l(al---an) = ij{’YRS*(C’&)daés)*(al(pl),a2;--.an)

- Z/dz (PlR_Sim)k;) dgéos)*(a(1k)(zp1),a2; ...Qn)

singularity in first line cancells corresponding virtual singularity

singularity in last line left over (will be cancelled by do°°!)
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one loop
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Real corrections, initial-state collinear singularities

for cDR, HV and FDH:
for DRED:
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one loop

AR
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Collinear counterterm

for CDR, HV and FDH: ( for DRED additional summation over g and g )

11 as Cr
doggy ps(@1,a2; .. .an) = —— E /dz
af

2T €

x| (PRS5(2) + €XT5, 1 (2) dod, (ai(zp1), az(p2); . - an)
+ (PR35(2) + X550 (2)) doll, (a1 (p1), ai(zp2); ... an) |

factorization scheme fixed by X1 ., (z).

in practice virtually always 3s: €X15,,. (2) = —P25 (2) + [PERE(2)] 54
l.e. remove O(¢) parts of P _, ;.

can use wms factorization scheme i.e. “normal” pdf with any regularization scheme
do not need g pdf
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one loop

1 [—s\ ¢ . .
® terms — (—2> etc cancel completely between real and virtual corrections
W

—€
® UV singularities cancel (;—i) — 1 — residual .z dependence ~ log(s/ur)

partially compensating as () dependence.
® initial state collinear singularities cancel with residual u dependence partially
compensating f, /g (1#r) dependence.

® 46 s finite and scheme independent (up to the order we have computed, i.e. O(a?)),
but there are (hopefully numerically small) implicit O(a%) differences between various
schemes. Split g = g + g in DRED is only needed for UV ren and initial state counter term.

® ur and ugr have nothing to do with each other, do not vary them together ! (though
everybody does because we're lazy)

® ur and pur dependence is not a reliable indicator of theoretical uncertainty, do not use this
to determine theoretical error ! (though everybody does, because there is nothing much
that is really better.)
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beyond one loop

AR
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Structure of two-loop calculation

virtual; / d®(2) (2Re A0 (g,9,t,D AP *(g,9,1,7)| + AV (g, 9,4, 7))

virtual singularities 1/¢* . . .; phase space integration finite

real-virtual: /dCI)(B) 2Re [A(O)(g,g,t,f, g)A(l)*(g,g,t,f, g)]

virtual singularities 1/¢2 . . .; phase space integration — 1/€2 .. ;

double real: /dCI)(4) |.A(O)(g,g,t,f,g,g)|2

no virtual singularities; phase space integration — 1/¢* .. ;
plus many additional processes: qq’ — ttqq’ plus many more
also needs pdf consistently at two-loops (available)

structure of singularities is known at two-loops (and higher) as well
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beyond one loop
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Resummation of large logs

so far do = o do™ + o7t do(™ 1) 4 .
this is fine if do(™) ~ do(*t1) but very often do("+1) > do(™).

if problem has two (or more) widely different scales g5, > gg we can get one or two powers of
log(QL/QS) PEr os.

as < 1, but as log(qr/qs) < 1 ? aslog?(qr,/qs) < 1 22??

need to resum logarithms, i.e. count a log(qr, /qs) ~ 1

logarithms are “remnants” of 1 /e poles = they are simpler to predict
use renromalization-group equations to resum logarithms

from LO, NLO, NNLO etc to LL, NLL, NNLL etc.
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beyond one loop

threshold logs in ¢t case For invariant mass of ¢¢ pair M close to partonic centre-of-mass v/
there are large logarithms log(1 — M/s). [plots from Ahrens et.al. arXiv:1003.5827]

do /dM [fbiGeV]

do /dM [pb/GeV]

0 /5 = 1.96 TeV
40
30
20
100 | @ N\LO B )
I NNLO, leading

0350 400 450

M [GeV]
0.8
0.6
0.4
02 {/" mm nNLO B \NLO ing | S

y ) g
LO

007350 400 450

M [GeV]

500

do /dM [fblGeV]

do /dM [pb/GeV]

50

40;

30;

20

10

NLL

I NLO+NNLL

V5 = 1.96 TeV

350

400 450

M [GeV]

500

NLL

0.0

350

400 450

M [GeV]
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beyond one loop

AR
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Parton showers

® Can use perturbation theory only if there is (at least) on large scale Q

® collinear emission — small relative pr — small relative p = large logarithm
log(Q?/p%.).
® resummation of these logarithms done by parton-showers.

® multiparton amplitudes have simple structure in (multiple) collinear limit

® to minimize deficiencies of using (collinear) approximation, combine parton showers with
exact matrix elements (where possible) and one-loop corrections (where possible)

® because of its massive importance, this is a huge “industry” (don’t dare to mention
programs, as | would miss some...)
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current state of art

This is NOT meant to be a complete list, just to give a flavour !!

real radiation, including subtraction terms

largely automated and fairly straightforward [Sherpa, MadGraph, Helac/Phegas ... ]

virtual one-loop

either analytic or semi-numerical [BlackHat, Golem, Rocket, CutTools .. .]

g9 — gggg, ...and more gluons for special helicity configurations

complete one-loop

2 — 4 (limit) [e.g. ttbb, V JJ J]
2 — 3 (“standard”) [e.g. ttZ, VV J, HJJ, .. ]

virtual two-loop

2 — 2 massless parton processes (for 2 jet production); gg — tt

complete two-loop
ete” = JJJ, g9 — H
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