Parameters cience & Technology

Determining SUSY Lagrangian Parameters

by

Ben Allanach (University of Cambridge)

Talk outline

- LHC SUSY measurements
- Tools
- SUSY model fits

Please ask questions while I'm talking

Ofking grow

The MSSM Lagrangian

 $W \mapsto (Y_E)_{ij} L_i H_1 \bar{E}_j + (Y_D)_{ij} Q_i H_1 \bar{D}_j + (Y_U)_{ij} Q_i H_2 \bar{U}_j$ $+\mu H_{2}H_{1}$ $\tilde{Q}_{i_L}(U_A)_{ij}\tilde{u}_jH_2 + \tilde{Q}_{i_L}(D_A)_{ij}\tilde{d}_jH_1 + \tilde{L}_{i_L}(E_A)_{ij}\tilde{e}_jH_1 +$ $H.c. + m_{H_1}^2 H_1^* H_1 + m_{H_2}^2 H_2^* H_2 + \tilde{Q}_i^* (m_{\tilde{Q}}^2)_{ij} \tilde{Q}_j +$ $\tilde{L}_i^*(m_{\tilde{L}}^2)_{ij}\tilde{L}_j + \tilde{u}_i(m_{\tilde{u}}^2)_{ij}\tilde{u}_j^* + \tilde{d}_i(m_{\tilde{d}}^2)_{ij}\tilde{d}_j^* + \tilde{e}_i(m_{\tilde{e}}^2)_{ij}\tilde{e}_j^* +$ $\left[m_3^2 H_2 H_1 + \frac{1}{2} \left(M_1 \tilde{b}\tilde{b} + M_2 \tilde{w}\tilde{w} + M_3 \tilde{g}\tilde{g}\right) + H.c.\right]$

Q: How many parameters including $g_{1,2,3}$? $\mathcal{A}: \sim 105$

Cambridge

Electroweak Breaking

Both Higgs get vacuum expectation values:

and to get M_W correct, match with $v_{SM} = 246$ GeV: v_{SM} v_2 $\tan \beta = \frac{v_2}{v_1}$

 $\begin{pmatrix} H_1^0 \\ H_1^- \end{pmatrix} \rightarrow \begin{pmatrix} v_1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ v_2 \end{pmatrix}$

 $\mathcal{L} = h_t \bar{t}_L H_2^0 t_R + h_b \bar{b}_L H_1^0 b_R + h_\tau \bar{\tau}_L H_1^0 \tau_R$ $\Rightarrow \frac{m_t}{\sin \beta} = \frac{h_t v_{SM}}{\sqrt{2}}, \qquad \frac{m_{b,\tau}}{\cos \beta} = \frac{h_{b,\tau} v_{SM}}{\sqrt{2}}.$

Want to do this with LHC+ILC data:

Science & Technology Facilities Council

Supersymmetry

Cambridge

What the LHC can do

One can constrain some MSSM sparticle masses using *kinematic endpoints*. Since the mass spectrum depends on the SUSY breaking \mathcal{L}_{soft} , very difficult to constrain things in general. Each pattern of \mathcal{L}_{soft} leads to very different decays of sparticles: many different possibilities. So: making the model constrained and doing a top-down fit is much easier.

Alternatively, one only considers a couple of sparticles (see later) and attempts to constrain these simple scenarios.

ience & Technology

Collider SUSY Dark Matter Production

Strong sparticle production and decay to dark matter particles.

Science & Technology

acilities Counci

Any (light enough) dark matter candidate that couples to hadrons can be produced at the LHC

SUSY Kinematics: a Reminder

Take an *on-shell* particle decaying into 2 particles, eg $H^0 \rightarrow b\overline{b}$. We define the invariant mass of the $b\overline{b}$ pair such that:

 $\bar{b}(p_{\bar{b}}) \Rightarrow p^2 \equiv p^{\mu}p_{\mu} = m_H^2 = (p_b + p_{\bar{b}})^2$ Is *invariant* in boosted frames

 $b(p_b)$ $p^{\mu} = (\sqrt{m_H^2 + p^2}, \underline{p}) = p_b^{\mu} + p_{\overline{b}}^{\mu}$

Question: What happens to invariant mass in SUSY cascade decays, where we miss the final particle?

Cambridge

Ofking grout

 $H^0(p)$

Narrow Width Approximation

Take some scalar propagator mod-squared:

$$D(p^2) = \frac{1}{(p^2 - m^2)^2 + m^2 \Gamma^2}$$
$$\lim_{\Gamma/m \to 0} D(p^2) = \frac{\pi}{(m\Gamma)\delta(p^2 - m^2)}.$$

Thus (as is often the case in the MSSM), for particles with narrow widths, we may approximate them assuming they have $p^2 = m^2$, ie they are *on-shell*. The next order in perturbation theory is $\mathcal{O}(m/\Gamma)$.

 $l^{-} \qquad p_{\tilde{l}}^{\mu} = (m_{\tilde{l}}, \underline{0})$ $p_{l^{\pm}}^{\mu} = (|\underline{p}_{l^{\pm}}|, \underline{p}_{l^{\pm}})$ $\underline{\chi_{1}^{0}}_{\chi_{1,2}^{0}} p_{\chi_{1,2}^{0}}^{\mu} = \left(\sqrt{m_{\chi_{1,2}^{0}}}^{2} + |\underline{p}_{\chi_{1,2}^{0}}|^{2}, \underline{p}_{\chi_{1,2}^{0}}\right)$ \tilde{l} χ^0_2 Work in *l* rest frame. The invariant mass of the l^+l^- pair is $m_{ll}^2 = (p_{l^+} + p_{l^-})^{\mu} (p_{l^+} + p_{l^-})_{\mu} = p_{l^+}^2 + p_{l^-}^2 + 2p_{l^+} \cdot p_{l^-}$ $=2|p_{I^+}||p_{I^-}|(1-\cos\theta) \le 4|p_{I^+}||p_{I^-}|.$ Momentum conservation: $\Rightarrow \underline{p}_{\chi_2^0} + \underline{p}_{l^+} = \underline{0}, \qquad \underline{p}_{l^-} + \underline{p}_{\chi_1^0} = \underline{0}.$ Energy conservation: $\sqrt{m_{\chi_2^0}^2 + |\underline{p}_{\chi_2^0}|^2} = m_{\tilde{l}} + |\underline{p}_{l^+}|,$ $\Rightarrow |\mathbf{p}_{l+}| = \frac{m_{\chi_2^0}^2 - m_{\tilde{l}}^2}{2m_{\tilde{l}}}$. Similarly $|\mathbf{p}_{l-}| = \frac{m_{\tilde{l}}^2 - m_{\chi_1^0}^2}{2m_{\tilde{l}}}$.

cience & Technology

Cambridge

Orking grout

 $m_{ll}^2(max) = \frac{(m_{\chi_2^0}^2 - m_{\tilde{l}}^2)(m_{\tilde{l}}^2 - m_{\chi_1^0}^2)}{m_{\tilde{z}}^2}$

Science & Technology Facilities Council

Q: Can we measure enough of these to pin SUSY^a down?

^aBCA, Lester, Parker, Webber, JHEP 0009 (2000) 004

Determining SUSY Lagrangian Parameters

Other Observables

Often more complicated, eg m_{llq} edge:

$$\frac{(m_{\tilde{q}}m_{\tilde{l}} - m_{\chi_2^0}m_{\chi_1^0})(m_{\chi_2^0}^2 - m_{\tilde{l}}^2)}{m_{\chi_2^0}m_{\tilde{l}}}$$

Also m_{lq}^{high} , m_{lq}^{low} , llq threshold ^a, $M_{T_2}^2(m) = \min_{\not p_1 + \not p_2 = \not p_T} \left[\max \left\{ m_T^2(p_T^{l_1}, \not p_1, m), m_T^2(p_T^{l_2}, \not p_2, m) \right\} \right]$

 $\max_{\text{rmining SUSY Lagrangian Parameters}} [M_{T_2}(m_{\chi_1^0})] = m_{\tilde{l}}] \text{ for dislepton production.}$

Edge Fitting at S5 and O1

, , , ,

•

¥

Cambridge

Edge Positions

Do a fit: all scalars considered degenerate in mSUGRA at M_{GUT} , whereas for O1, squarks are massless there.

endpoint/GeV	S5 fit	O1 fit
m_{ll}	109.10 ± 0.13	70.47 ± 0.15
$m_{llq} \ edge$	532.1±3.2	$544.1 {\pm} 4.0$
lq high	483.5±1.8	$515.8 {\pm} 7.0$
lq low	321.5 ± 2.3	249.8 ± 1.5
llq thresh	266.0 ± 6.4	182.2 ± 13.5

Best case lepton mass measurements can be as accurate as 1 per mille, but jets are a few percent^a

^aSee Barr, Lester, arXiv:1004.2732 for a review of other mass measurement techniques

Mass differences well constrained, but overall mass scale not so well constrained by LHC^a

^aBCA, Lester, Parker, Webber, hep-ph/0007009

Simple Study

Can bound^{*a*} $pp \to \tilde{g}\tilde{g}$, with $\tilde{g} \to 2j \not\!\!\!\!/_T$ from^{*b*}:

Very simple situation: depends only on $m_{\tilde{g}}$, $m_{\chi_1^0}$ and possibly $m_{\tilde{q}}$ through production matrix elements.

^aAlves, Izaguirre, Wacker, arXiv:1008.0407 ^bATLAS, ATLAS-CONF-2010-065

- Do the spins correspond to SUSY?
- Do the couplings correspond to SUSY? Eg

All of these detailed checks are very difficult to do at the LHC. Really, one needs a future linear collider to do these things: with enough energy to produce the relevant sparticles.

Science & Technology Facilities Council

Coupling Measurement

$$\tilde{u}_L \to d\chi_1^+ \to dl^+ \nu_l \chi_1^0, \ \tilde{u}_L^* \to \bar{d}\chi_1^- \to dl^- \bar{\nu}_l \chi_1^0$$

The idea is to use the lepton charge to tag the charge of the initial quark and look for $\tilde{q}_L \tilde{q}_L$ production. Assuming ILC data on BRs, can get ~ 4% accuracy for 100 fb^{-1a} at an easy point.

Science & Technology Facilities Council

Cambridge

Working grout

Determining Susylagrangian Parameters ations give different distributions!

Spins II

$\frac{dP(l^+q/l^-\bar{q})}{dm} = 4m^3, \qquad \frac{dP(l^-q/l^+\bar{q})}{dm} = 4m(1-m^2),$

Seems hopeless, since we cannot tag quarks vs anti-quarks (average is PS). But pp gives more \tilde{q} than $\tilde{q}^*!$ which leads to spin-generated lepton charge

asymmetry

Barr, hep-ph/0405052

$$A^{+-} = \frac{s^{+}-s^{-}}{s^{+}+s^{-}}$$
$$s^{\pm} = \frac{d\sigma}{d(m_{l^{\pm}q})}$$
$$\mathcal{L} = 150pb^{-1}$$

Region of Validity of Barr Method

For $\mathcal{L} = 150 \text{ fb}^{-1}$, can discriminate against phase space in the orange and red regions *only*.

Science & Technology Facilities Council

Supersymmetry

Cambridge

ambridge

Otking grout

Universality

Reduces number of SUSY breaking parameters from 100 to 3:

- $\tan\beta \equiv v_2/v_1$
- m_0 , the common scalar mass (flavour).
- $M_{1/2}$, the common gaugino mass (GUT/string).

• A_0 , the common trilinear coupling (flavour). **These conditions** should be imposed at $M_X \sim O(10^{16-18})$ GeV and receive radiative corrections $\propto 1/(16\pi^2) \ln(M_X/M_Z)$.

Also, Higgs potential parameter $sgn(\mu)=\pm 1$.

Science & Technology acilities Counci

SOFTSUSY

SOFTSUSY is an MSSM spectrum generator. Like 3 other public spectrum generators, it predicts MSSM masses and couplings consistent with weak-scale data and an assumed high-scale boundary condition on SUSY breaking.

Fitting to SUSY Breaking Model

- Experimenters pick a SUSY breaking point
- They derive observables and errors after detector simulation
- We fit^{*a*} this "data" with our codes

^aBCA, S Kraml, W Porod, JHEP 0303 (2003) 016

Determining SUSY Lagrangian Parameters

Science & Technology Facilities Council

Cambridge

See a review: BCA, arXiv:0805.2088

Determining SUSY Lagrangian Parameters

Determining SUSY Lagrangian Parameters

Spectrum and decays

- **ISASUSY** decouples particles at the mass thresholds but misses some finite terms in the matching: re-sums log splittings.
- SOFTSUSY, SPHENO, SUSPECT all catch the finite terms but do the splittings to leading log in RPC-MSSM.
- **CPsuperH**, **FeynHiggs** do Higgs mass spectrum and decays of CP violating MSSM
- NMSPEC does the CNMSSM spectrum, NMHDECAY gives the decays widths etc
- PYTHIA, HERWIG++, ISASUSY, SPHENO and SUSYHIT do decays of Higgs and SUSY particles in MSSM.

Science & Technology

Matrix Element Generators

- Feyn Arts/Feyn Calc
- Additional hard jets *cannot* be modelled reliably using the parton shower you need to simulate the matrix element.
- SMADGRAPH, compHEP, calcHEP, GRACE do SUSY and more general models at tree level. 2 to 4 possible. BRIDGE can be used to remember spin information in the decays.
- WHIZARD, SUSYGEN polarisation included for e^+e^-
- **PROSPINO** does NLO-QCD sparticle production

cience & Technology

Event Generation

- Can pass matrix-element generated events to event generators with the (original) *Les Houches Accord*
- **PYTHIA** used extensively. Includes RPV. phase-space decays. **ISAJET** too.
- HERWIG maintains spin info down cascade decays. RPV too.
- SHERPA matches up ME with more standard event generation. Structure of LHC Events
- Shift toward C++

Science & Technology Facilities Council

SUSY Prediction of Ωh^2

- Assume relic in thermal equilibrium with $n_{eq} \propto (MT)^{3/2} exp(-M/T).$
- Freeze-out with $T_f \sim M_f/25$ once interaction rate < expansion rate (t_{eq} critical)
- microMEGAs uses calcHEP to automatically calculate relevant Feynman diagrams for some given model Lagrangian: *flexible*.
- darkSUSY, IsaRED has MSSM annihilation channels hard-coded.
- Both darkSUSY and micrOMEGAs calculate (in-)direct predictions.

ence & Technology

SUSY Dark Matter

astro-ph/0608407

SUSY Prediction of Ωh^2

- Assume relic in thermal equilibrium with $n_{eq} \propto (MT)^{3/2} exp(-M/T).$
- Freeze-out with $T_f \sim M_f/25$ once interaction rate < expansion rate (t_{eq} critical)
- microMEGAs uses calcHEP to automatically calculate relevant Feynman diagrams for some given model Lagrangian: *flexible*.
- darkSUSY, IsaRED has MSSM annihilation channels hard-coded.
- Both darkSUSY and micrOMEGAs calculate (in-)direct predictions.

ence & Technology

Caveats

- Implicitly assumed that LSP constitutes *all* of dark matter
- Assumed radiation domination in post-inflation era. No clear evidence between freeze-out+BBN that this is the case (t_{eq} changes).
- Examples of non-standard cosmology that would change the prediction:
 - Extra degrees of freedom
 - Low reheating temperature
 - Extra dimensional models
 - Anisotropic cosmologies
 - Non-thermal production of neutralinos (late decays?)

ience & Technology

Implementation

We use

- 95% C.L. direct search constraints
- $\Omega_{DM}h^2 = 0.1143 \pm 0.02$ Boudjema *et al*
- $\delta(g-2)_{\mu}/2 = (29.5 \pm 8.8) \times 10^{-10}$ Stöckinger *et al*
- *B*-physics observables including $BR[b \to s\gamma]_{E_{\gamma} > 1.6} \text{ GeV} = (3.52 \pm 0.38) \times 10^{-4}$
- Electroweak data W Hollik, A Weber et al

$$2\ln \mathcal{L} = -\sum_{i} \chi_{i}^{2} + c = \sum_{i} \frac{(p_{i} - e_{i})^{2}}{\sigma_{i}^{2}} + c$$

Additional observables

$$\delta \frac{(g-2)_{\mu}}{2} \sim 13 \times 10^{-10} \left(\frac{100 \text{ GeV}}{M_{SUSY}}\right)^2 \tan\beta$$

 $BR[b \to s\gamma] \propto \tan\beta (M_W/M_{SUSY})^2$

Application of Bayes'

 $\mathcal{L} \equiv p(\underline{d}|\underline{m}, H)$ is pdf of reproducing data \underline{d} assuming pMSSM hypothesis H and model parameters \underline{m}

$$p(\underline{m}|\underline{d},H) = p(\underline{d}|\underline{m},H) \frac{p(\underline{m},H)}{p(\underline{d},H)}$$

 $p(\underline{m}|\underline{d}, H)$ is called the posterior pdf. We will compare $p(\underline{m}, H) = c$ with a *different* prior.

$$p(m_0, M_{1/2}|\underline{d}, H) = \int d\underline{o} \ p(m_0, M_{1/2}, \underline{o}|\underline{d}, H)$$

Called marginalisation.

Likelihood and Posterior

Q: What's the chance of observing someone to be pregnant, given that they are female?

d=pregnant, m=female Likelihood p(pregnant | female, human) = 0.01Posterior p(female | pregnant, human) = 1.00

cience & Technology

More obvious what to do in discrete cases like this one

Volume Effects

Can't rely on a good χ^2 in non-Gaussian situation

Markov-Chain Monte Carlo

Metropolis-Hastings Markov chain sampling consists of list of parameter points $x^{(t)}$ and associated posterior probabilities $p^{(t)}$.

Final density of x points $\propto p$. Required number of points goes *linearly* with number of dimensions.

ience & Technolog

Global Fits II

pMSSM Fits

25 pMSSM input parameters are: $M_{1,2,3}$, $A_{t,b,\tau,\mu}$, $m_{H_{1,2}}$, $\tan \beta$, $m_{\tilde{d}_{R,L}} = m_{\tilde{s}_{R,L}}$, $m_{\tilde{u}_{R,L}} = m_{\tilde{c}_{R,L}}$, $m_{\tilde{e}_{R,L}} = m_{\tilde{\mu}_{R,L}}$, $m_{\tilde{t},\tilde{b},\tilde{\tau}_{R,L}}$ m_t , $m_b(m_b) \alpha_s(M_Z)^{\overline{MS}}$, $\alpha^{-1}(M_Z)^{\overline{MS}}$, M_Z . Combined Bayesian fit^a:

			O ^{meas} - O ^{fit} / σ ^{mea}
Observable	Measurement	Fit(Log)	0 1 2 3
n _w [GeV]	80.399 ± 0.025	80.402	
z [GeV]	$\textbf{2.4952} \pm \textbf{0.0025}$	2.4964	
sin² θ ^{eff} lep	$\textbf{0.2324} \pm \textbf{0.0012}$	0.2314	
$(g-2)_{\mu} imes 10^{10}$	$\textbf{30.20} \pm \textbf{9.02}$	26.74	
ξ ⁰	$\textbf{20.767} \pm \textbf{0.025}$	20.760	
R _b	$\textbf{0.21629} \pm \textbf{0.00066}$	0.21962	
R _c	$\textbf{0.1721} \pm \textbf{0.0030}$	0.1723	
4 _e	$\textbf{0.1513} \pm \textbf{0.0021}$	0.1483	
4 _b	$\textbf{0.923} \pm \textbf{0.020}$	0.935	
A _c	$\textbf{0.670} \pm \textbf{0.027}$	0.685	
Ч ^ь FB	$\textbf{0.0992} \pm \textbf{0.0016}$	0.1040	
<mark>с</mark> FB	$\textbf{0.071} \pm \textbf{0.035}$	0.074	
$BR(B \rightarrow X_s \gamma) \times 10^4$	$\textbf{3.55} \pm \textbf{0.42}$	3.42	
R _{BR(B} →τν)	1.11± 0.32	1.00	
R _{Δ M_B}	$\textbf{1.15} \pm \textbf{0.40}$	1.00	
\ ₀₋	$\textbf{0.0375} \pm \textbf{0.0289}$	0.0748	
2 _{cDM} h ²	0.11± 0.02	0.13	

^aS.S. AbdusSalam, BCA, F. Quevedo, F. Feroz, M. Hobson, arXiv:0904.2548

Prior Independence

Once LHC data on sparticle production is included, prior dependence in mSUGRA decreases: Roszkowski, Ruiz de Austri, Trotta, arXiv:0907.0594

Science & Technology

Facilities Council

Working grow

Large Volume String Models

BCA, Dolan, arXiv:0806.1184

$$M_{1/2} = -A_0 = m_0/\sqrt{3}$$

 $M_X = 10^{11} \text{ GeV}$

Two constraints enough!

Model Comparison

Calculate the *Bayesian evidence* of each model

$$\mathcal{Z}_i = \int p(\underline{d}|\underline{m}, H_i) \ p(\underline{m}|H_i) \ d\underline{m}$$

$p_i/p_{ m mSUGRA}^{lin}$	asymmetric ^{<i>a</i>} \mathcal{L}_{DM}		
Model/Prior	linear	log	flat μ, B
mSUGRA	1	3	4
mAMSB	164	403	148
LVS	18	20	22

Determining SUSY Lagrangian Parametersam, BCA, Dolan, Feroz, Hobson, arXiv:0906 B. C. Albanach - p. 45

Summary

Supplementary Material

MSSM Neutral Higgs Potential

$$V = (|\mu|^{2} + m_{H_{u}}^{2})|H_{u}^{0}|^{2} + (|\mu|^{2} + m_{H_{d}}^{2})|H_{d}^{0}|^{2})$$
$$-\mu B(H_{u}^{0}H_{d}^{0} + c.c.)$$
$$+\frac{1}{8}(g^{2} + g'^{2})(|H_{u}^{0}|^{2} - |H_{d}^{0}|^{2})^{2},$$
$$\frac{\partial V}{\partial H_{u}^{0}} = \frac{\partial V}{\partial H_{d}^{0}} = 0$$
$$+\mu B = \frac{\sin 2\beta}{2}(\bar{m}_{H_{d}}^{2} + \bar{m}_{H_{u}}^{2} + 2\mu^{2}),$$
$$\mu^{2} = \frac{\bar{m}_{H_{d}}^{2} - \bar{m}_{H_{u}}^{2}\tan^{2}\beta}{\tan^{2}\beta - 1} - \frac{M_{Z}^{2}}{2}.$$

Natural Prior

We have assumed a flat prior in $\tan \beta$, implies a measure:

$$p(m_0, M_{1/2} | \text{data}) = \int dA_0 d \tan \beta \, ds$$
$$p(m_0, M_{1/2}, A_0, \tan \beta, s | \text{data}).$$

Change variables: $\int d\mu dB \delta(M_Z - M_Z^{cen}) \rightarrow \int dM_Z d \tan \beta |J| \delta(M_Z - M_Z^{cen})$

$$J = \frac{B}{\mu \tan \beta} \frac{\tan^2 \beta - 1}{\tan^2 \beta + 1} \frac{1}{\sin \beta}$$

Cabrera, Casas, de Austri, arXiv:0812.5316 have considered $\{\mu, B, \lambda_t\} \rightarrow \{M_Z, \tan\beta, m_t\}$.

Supersymmetry

Cambridge

Working grout

p. 50

Supersymmetry

Cambridge

Working grow

Determining S

Killer Inference for Susy METeorologyBCA, Cranmer, Weber, Lester, arXiv:0705.0487

– p. 51

The Sign of μ

In order to calculate $p(d|H_1)/p(d|H_2)$, we calculate the Bayesian evidence ratio:

$$p(d|H_i) = \int dm \ p(d|m, H_i) p(m|H_i)$$

$$\Rightarrow p(H_i|d) = p(H_i) p(d|H_i)$$

cience & Technology

Cambridge

Orking group

So, put $H_1 = \mu > 0$, $H_2 = \mu < 0$ to find:

Prior	$P_{+}/P_{-}(2 \text{ TeV})$	$P_{+}/P_{-}(4 \text{ TeV})$
flat	15.6	5.9
log	61.6	24.0

Requires multi-modal ellipsoidal nested sampling^a

^aFeroz, BCA, Hobson, AbdusSalam, Trotta, Weber, JHEP 10 (2008)

Dark Matter Detection

Ice Cube

Neutralinos can become trapped in the sun $\tilde{h}^0 - Z$ coupling $\sigma_{\chi^0 p,SD} \propto [|N_{1d}|^2 - |N_{1u}|^2]^2$ dominates. $A^{\odot} \equiv \sigma v/V$:

Science & Technology

$$N = C^{\odot} - A^{\odot} N^{2},$$

$$\Gamma = \frac{1}{2} A^{\odot} N^{2} = \frac{1}{2} C^{\odot} \tanh^{2} \left(\sqrt{C^{\odot} A^{\odot}} t_{\odot} \right)$$

$$\frac{N_{\nu_{\mu}}}{E_{\nu_{\mu}}} = \frac{C_{\odot} F_{\text{Eq}}}{4\pi D_{\text{ES}}^{2}} \left(\frac{dN_{\nu}}{dE_{\nu}} \right)^{\text{Inj}}$$

$$N_{\text{ev}} \approx \int \int \frac{dN_{\nu_{\mu}}}{dE_{\nu_{\mu}}} \frac{d\sigma_{\nu}}{dy} R_{\mu} ((1 - y) E_{\nu}) A_{\text{eff}} dE_{\nu_{\mu}} dy$$

Naturalness priors

Determining SUSY Lagrangian Parameters

Orking grout

Potential Problem

Often, people use a flat Q(x). The trouble with this *"blind drunk"* sampling is the following situation:

Either large or small proposal widths σ lead to low efficiencies of sampling. Our proposal is to determine a Q(x) closer to P(x) semi-automatically.

Bank Sampling

Figure 1: Bank points determined from previous runs: want to have at least one point in each maximum. *Knowledgeable drunk*

Proposal Distribution

$$Q_{bank}(\mathbf{x};\mathbf{x}^{(t)}) = (1-\lambda)K(\mathbf{x};\mathbf{x}^{(t)}) + \lambda \sum_{i=1}^{N} w_i K(\mathbf{x};\mathbf{y}^{(i)})$$

 w_i are a set of N weights: $\sum_{i=1}^{N} w_i = 1, 0 < \lambda < 1$, while K is the proposal distribution.

With probability $(1 - \lambda)$ propose a local Metropolis step of the usual kind, i.e. "close" to the last point in the chain. With probability λ , teleport to the vicinity of one of the number of "banked" points, chosen with weight w_i from within the bank.

Science & Technology

Collider Check

Need corroboration with *direct detection*. If we can pin particle physics down, a comparison between the predicted relic density and that observed is a test of the cosmological assumptions used in the prediction.^{*a*} Thus, if it doesn't fit, you change the cosmology until it does.

^{*a*}BCA, G. Belanger, F. Boudjema, A. Pukhov, JHEP 0412 (2004) 20.; M. Nojiri, D. Tovey, JHEP 0603 (2006) 063

CMSSM Regions

ence & Technolog

Orking grout

After WMAP+LEP2, bulk region diminished. Need specific mechanism to reduce overabundance:

- *τ* coannihilation: small m₀, m_{τ̃1} ≈ m_{χ1}⁰.

 Boltzmann factor exp(-ΔM/T_f) controls ratio of species. *τ*₁χ₁⁰ → τγ, *τ*₁*τ*₁ → τ*τ*.
- Higgs Funnel: $\chi_1^0 \chi_1^0 \to A \to b\bar{b}/\tau\bar{\tau}$ at large $\tan \beta$. Also via^{*a*} *h* at large m_0 small $M_{1/2}$.
- Focus region: Higgsino LSP at large m_0 : $\chi_1^0 \chi_1^0 \rightarrow WW/ZZ/Zh/t\bar{t}.$
- \tilde{t} coannihilation: high $-A_0, m_{\tilde{t}_1} \approx m_{\chi_1^0}$. $\tilde{t}_1 \chi_1^0 \to gt, \tilde{t}\tilde{t} \to tt$

Comparison

- LHS: allowing non thermal- χ_1^0 contribution
- RHS: only χ_1^0 dark matter
- (flat priors)

Annihilation Mechanism

Define stau co-annihilation when $m_{\tilde{\tau}}$ is within 10% of $m_{\chi_1^0}$ and Higgs pole when $m_{h,A}$ is within 10% of $2m_{\chi_1^0}$.

	mechanism	flat prior	natural prior
	h^0 -pole	0.025	0.07
	A^0 -pole	0.41	0.14
	$\tilde{\tau}$ -co-annihilation	0.26	0.18
	rest	0.31	0.61
χ_1^0	$\frac{\overline{b}}{\overline{b}}, \underline{A}^{0}, \underline{A}^{0},$	$ \bar{\tau} \tilde{\tau} \sum$	T
χ_1^0	b	$ au \chi_1^0$	2γ

Science & Technology Facilities Council

cupersymmer

ambridge

Orking grout

Comparison

- Fix $\tan \beta = 10$ and all SM inputs
- Restrict $m_0, M_{1/2} < 1$ TeV.
- *Same* fits!

No Dark Matter Fits

Huge χ^2 from the dark matter relic density.

Sanity Check

– p. 65

LHC vs LC in SUSY Measurement

• LHC (start date 2007) produces strongly interacting particles up to a few TeV. Precision measurements of mass *differences* possible if the decay chains exist: possibly per mille for leptons, several percent for jets.

• ILC has several energy options: 500-1000 GeV, CLIC up to 3 TeV. Linear colliders produce less strong particles but much easier to make precision measurements of masses/couplings.

Q: What energy for LC?*Q*: What do we get from LHC^a?

^aLHC/ILC Working Group Report: hep-ph/0410364

ence & Technology

Orking grow

Convergence

We run 9×1000000 points. By comparing the 9 independent chains with random starting points, we can provide a statistical measure of convergence: an upper bound r on the excepted variance decrease for infinite statistics.

Cambridge

Predicting Ωh^2

Not much left that's allowed but edge measurements allow reasonable Ωh^2 error^{*a*} for 300 fb⁻¹.

Q: What about other bits of parameter space? ^{*a*}M Nojiri, G Polesello, D Tovey, JHEP 0603 (2006) 063, hep-ph/0512204.

Determining SUSY Lagrangian Parameters

B.C. Allanach – p. 68

Cambridge

Vorking grout

Bulk Region

M Nojiri, G Polesello, D Tovey, JHEP 0603 (2006) 063, hep-ph/0512204. for 300 fb⁻¹. SPA point $m_0 = 70 \text{ GeV}, m_{1/2} = 250 \text{ GeV}, A_0 = -300 \text{ GeV},$ $\tan \beta = 10, \mu > 0$: $\Omega h^2 = 0.108$. Put in $m_{ll}^{max}, m_{llq}^{max},$ $m_{lq}^{low}, m_{lq}^{high}, m_{llq}^{min}, m_{lL} - m_{\chi_1^0}, m_{ll}^{max}(\chi_4^0), m_{\tau\tau}^{max}, m_h.$

$$\begin{array}{ccc} \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow \ell^{+}\ell^{-} & 40\% \\ \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow \tau^{+}\tau^{-} & 28\% \\ \tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \rightarrow \nu\bar{\nu} & 3\% \\ \tilde{\chi}_{1}^{0}\tilde{\tau}_{1} \rightarrow Z\tau & 4\% \\ \tilde{\chi}_{1}^{0}\tilde{\tau}_{1} \rightarrow A\tau & 18\% \\ \tilde{\tau}_{1}\tilde{\tau}_{1} \rightarrow \tau\tau & 2\% \end{array}$$

Neutralino mass matrix

Neutralino masses measured: $\chi^0_{1,2,4}$ but need mixing matrix to determine couplings. Left with $\tan \beta$.

M_1	0	$-m_Z c_\beta s_W$	$m_Z s_\beta s_W$ –
0	M_2	$m_Z c_eta c_W$	$-m_Z s_\beta c_W$
$-m_Z c_\beta s_W$	$m_Z c_eta c_W$	0	$-\mu$
$m_Z s_\beta s_W$	$-m_Z s_\beta c_W$	$-\mu$	0

Science & Technology Facilities Council

 $\mathbf{1}^{\mathbf{1}} \mathbf{1}^{\mathbf{1}} \mathbf{1}^{\mathbf{1}}$

Supersymmetry Cambridge

Determining SUSY Lagrangian Par

Neutralino mass matrix

Neutralino masses measured: $\chi^0_{1,2,4}$ but need mixing matrix to determine couplings. Left with $\tan \beta$.

B.C. Allanach – p. 70

Uncertainties in Relic Density

Bulk region: $\tilde{B}\tilde{B} \to Z, h \to l\bar{l}$. Coannihilation: $\tilde{\tau}\chi_1^0 \to \tau + X$

Figure 2:Bulk/coannihilation region.Full:SoftSusy, dotted: SPheno.