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‘ Two-component spinors I

First, recall that 4-vectors transform under Lorentz transformations, A*,, as
p'#* = A¥ p”, where A €S0O(3,1) satisfies A", g,,A”x = gux." A Lorentz
transformation corresponds to a rotation by # about an axis 7 [@ = 7] and
a boost, 5: ®tanh "

, where v is the corresponding velocity. Under the
same Lorentz transformation, a generic field transforms as:

q”(w’) = Mr(A)®(z),

where Mpr = exp( z ) are N x N representation matrices of
the Lorentz group. Defining f = 2(J [ +iK)and J_ = §(f— iK),
L, ) =itk L, i = 0.

Thus, the representations are characterized by (j1, j2), where the j; are half-

integers. (0,0) is a scalar and (3,2) is a four-vector. Of interest to us are

the spinor representations (3,0) and (0, 1).

*In our conventions g,,, = diag(1, —1, —1, —1).




(0,1): M1 = exp (—;é‘ G+ 1 &’), but also M* = ig2[M ] (i02)~"
since (i02)& (i0?) ! = —F" = —&"

Transformation laws of 2-component fields

gzx — Mozﬁ 5@7
go=[(M ¢,
gte =[N et

ARSIy
We use io? = (_] () = €* = %8 and (ic?)™! = —i0? = €qp = €45 tO
raise and lower spinor indices: £¢ = P £3; 5:; = €45 £1P | etc. Dotted and

undotted indices are related by hermitian conjugation: 5(2 = (&7,



Finally, we introduce the o-matrices:

ol =1 &), T = (L —F),

where [5 is the 2 x 2 identity matrix. The spinor index structure derives from

the relations:
MGHM = AP, 57, M oM HT = A+ 0"

For example, (]\ff)é‘ﬁ-ﬁﬁ'ﬂ\@‘s = A, 57 % Note that the matrix M and its

inverse have the same spinor index structure. Some useful identities:

agd:eagedﬁ-ﬁ“ﬁﬁ, E“é‘o‘:eo‘ﬁe‘magﬁ-.

The utility of o# is that Lorentz 4-vectors can be built from spinor bilinears:
X' (a)o T = X (@) Mo (M) s )

= A, ()0 56 (2).



Spinor indices can be suppressed as long as one adopts a summation
convention where we contract indices as follows:
&

o’
o and &

For example, En = €914,
&' =¢ln',
ey = 5" ng,
o'y’ = s“agﬁ-n*ﬁ.
Note that for anticommuting spinors, e.g.,

nE =n"a = —an® =+ . = 0.

It is also useful to note the behavior of spinor products under hermitian
conjugation:
(€E)T =", (€07 =957
where in each case X stands for any sequence of alternating o and @ matrices,

and X, is obtained from X by reversing the order of all of the o and @ matrices.



From the sigma matrices, one can construct the antisymmetrized products:

(O-/ﬂ/)aﬁ — i (O%EVW _ Jgﬁgmﬁ) 7
o i/ iy
(0“”)0‘5 = 1 (O’MOWO'};B' — 0’/0‘70%) .

We may write the (3,0) and (0, %) transformation matrices, respectively, as:
M = exp (—%HWJW) :
(M~1)T = exp (—%HWEW) :

where 0" is antisymmetric, with 0% = €“%0% and 9°° = (*. Consider a

pure boost of an on-shell spinor from its rest frame to the frame where
p* = (E,, p), with E, = (|p]2 + m?)1/2. Setting 67 = 0,

M —eup (L457) = [T~ i 25
m V2m(E, + m)

) . T E,tm+ &P
MY =exp (+48-5) = /2 = =2 .




Useful identities and Fierz relations

¥6 BNY N o) . A o6 5 oA
ol 7, = 2806
O-Zdo-,uﬁﬁ' — 2€aﬂ€a5 : Eudaﬁﬁﬁ _ 2€a5€d5 ’

[c"T" + JVE“]aﬁ = 29“'/56

o )
—u vV —V i UV s
[0+ 0"y =2g9""6,
o' o = g" P — g" o’ 4+ g" ot + i o,

Vp— . VOoK—
I PGH _ 5 elP

— V— V— —V
oc'oc"c’ = ¢g"'e’ — ¢"’T" + g 1€ Ok -

Computations of cross sections and decay rates generally require traces of alternating
products of o and & matrices:
Tr[oc"T"] = Tr[c"c"] = 2¢"",
Tr[o"5"0"0"] =2 (99" — g""g"" + g""g"" + i""")
Tr[c"0 5 0" = 2 (9" 9" — g""9"" + g""g"" — i),
0123 __

where € — —e€p123 = +1 in our conventions. Traces involving an odd number of o and

o matrices cannot arise, since there is no way to connect the spinor indices consistently.



We shall deal with both commuting and anticommuting spinors, which we shall denote

generically by z;. Then, the following identities hold

21292 —(—1)A2221
A
2] = —(—=1)"2]z]

zlaﬂz; = (—1)Az;E”z1

_ A _

Zla'MO'VZQ = —(—1) ZQO'VGMZl
t—p v Tt _ A _t=v _p T
21000 zg = —(—1)" 250 o'z

f=p _p—=v_  _ A v—p T
21000 29 = (—1)" 200 6 0" 2,

where (—1)* = +1[—1] for commuting [anticommuting] spinors. Finally, the Fierz

identities are given by:

(z122)(2324) = —(2123)(2422) — (2124)(2223) ,

(z12D)(2l2]) = — (12D (2l2]) — (212D (212))
(210" 28) (257 u24) = —2(2124) (2d2))
(215" 22) (215 ,20) = 2(2]20) (2422) ,

(z106"2]) (z30,2)) = 2(2123)(2}2]) -



‘ Properties of fermion fields |

The (1,0) spinor field &, (z) describes a neutral Majorana fermion. The

free-field Lagrangian is:

L =i'o"0,& — tm(E¢ + £1¢T).

On-shell, ¢ satisfies the free-field Dirac equation, iﬁ“w@uﬁﬁ = m&TY. The

solution is:

d3_’ o~ — —ip-x — — ip-x
Z/ 27)3/2(2E,)1/2 20 (B, 8)a(P, s)e™ """ + ya (P, s)a' (B, s)e™ ]

and §T (€,)T. The two-component fermion wave functions, = and y are

commuting spinors that satisfy the momentum-space Dirac equation:

(p-o)*xs =my'™ (p0) gy’ ’ =maq .

68

(p~a)aﬁx —MYq (poﬁ)‘wy@ — —max' Y.



The spin or helicity is labeled by s = i%. For spin, we quantize in the rest

frame along a fixed axis § = (sinflcos ¢, sinfsin¢, cosf). Eigenstates of

20+ § are denoted by X, i.e., 36+ x, = sx,,. Explicitly,

2
(4) e~1%/2 cos(6/2) (3) —e""/25in(0/2)
X S) = . X— S) = .
Ve e'?/2sin(6/2) Ve e'?/2 cos(6/2)

Introduce the spin 4-vector for massive fermions. For fixed-axis spin states,

S* = (0; 8) in the rest frame, boosting to the frame where p = (E,; P),

S“:<@‘§—|— (ﬁé)ﬁ )

m m(E + m)
Helicity states are defined to be eigenstates of %6"-13, i.e., %5'"2590\ = AX)
(A = :I:%) The explicit forms for x, are the same as above, with 6 and ¢ the
polar and azimuthal angles of p. The spin 4-vector is defined by taking § = p.
Thus, S* = —(|p]; EP). In the high energy limit, S* = p*/m + O(m/FE).

1
m



Explicit construction of the x and y wave functions

The Dirac equation implies that in the rest frame 21 = y'! and z5 = y'2.
That is, z(p = 0) = y' *(p = 0) are linear combinations of the x, (s = £3).
Choose z,(p = 0,5) = yT¥(p = 0,5) = \/mXs, and boost to p # 0:

xa(ﬁa S) — VPO Xs ya(ﬁa S) — 28\/p°O-X—57

21 (P,s) = —25/p-T Xx_s, y 4P, s) = /DT Xs -

For helicity spinors, replace s with A. For massless fermions, we must use

helicity spinors. Putting £ = |p] and m =0,

To(P,N) = VE/2 (1-2)) xy,
Yo, A) = VE/2 (14+2)) x_»,
TP = VE/2 (1-2)) x_y,
y BN = VE/2 (1+42)) xy

For a given A, only one helicity component of  and ¥ survives.



Projection operators

o (P, s)a:T. (p,s) = %(pu — 23mSM)o“. :
y' (B, s)y (B, s) = 5(p" + 25mS")7,",
2o (B, )y (B, 8) = § (md.” — 25[S-0p-5).") |
y' (B, )zl (B, s) = § (md”; + 25[S-Fp-o]®y) |
For massless spinors, the helicity projection operators are:
zo (B, N)a}(B, ) = (5= Npoy;,
y' BNy (B A) = (5 4+ Np-7,
za(B, Ny (B, N) = v (B, Nl (B, A) = 0.

Summing over s (or A) yields:

> wa(B, 8)zf(B.s) = p-o,, Zy (P, s)y’ (B, s) = p T,
S

> " za(P, s)y (B, s) = mba” >y NB s)zl (B, s) = mé”



‘ Covariant spin vectors and the Bouchiat-Michel formulae I

Introduce the covariant spin vectors,

S““:(ﬁ°§a-§“+ (ﬁ'éa)ﬁ> a=1,2,3
m Y m(E+m) Y Y Y Y

A

where the unit vectors 8% are mutually orthogonal. For fixed-axis spin states, where §
denotes the axis direction, we identify 8° = §. For helicity states, we identify §* = p?,
where the p® are an orthonormal triad of unit three-vectors with p° = p. In the latter

case, we have the explicit representation,

p| FE
s"=(0;p"),  S"=(0;p), 53“=(M;—ﬁ) ,
m m
in a coordinate system where p* = (E ; p) and p = (sin 0 cos ¢, sin 0 sin ¢, cos ).
We also define a matrix-valued spin four-vector S*, whose matrix elements are given by:

Lo Qai_a I 1
SSS,:S Teol s s,s = s,

where T:S, are the matrix elements of the Pauli matrices.



The Bouchiat-Michel formulae (adapted to two-component spinor notation) are given by:

o (D, s/)xg(f)’, s) = %(p §. —mS,_ ) T s

y' (B, sy (B, s) = 3(p 6,y +mS, )T,

2a(B, )y (B, 5) = § [m6, 18" — [(0-8,) @ p))a"]

Y (B, )l (B, 5) = § [md 8% + [(7-5,0) (o-p)] 5] -
Applying the above results to the helicity spinors in the massless limit,

xa(ﬁa )\/)CU;(ﬁ, >‘) — (% _ >\) 5)\)\’p'0-a5' 9
de(ﬁa X)yﬁ(f)’, A) = (% + A) Sy P'F(w :
2o (B, N )y (BN = (3 = N)E+ N [(e-50) @ p)], "

y' (BN )2l (B, = G+ NG = N [([F-5:)(0-p)]" 4

where
. 0 . 0
% sin 6 e P sin? = % sin 0 —e " cos? —
oS = ; 21, 7.5, = ; 2
— €' cos? 5 —% sin 6 e'? sin? — —% sin 6



‘ Fermion mass diagonalization I

The Lagrangian of a collection of free anti-commuting spin-1/2 “interaction-eigenstate” fields

Eai(z), labeled by flavor index i:
& = i€1'5"0,€ — IMVEE; — LM EVEN
where M;; = (M")* is a complex symmetric matrix. We shall rewrite this in terms of

mass-eigenstate fields & (z) = Q7 1€(x), where € is unitary and chosen such that
Q"M Q = m = diag(mi, ma, . ..).

In linear algebra, this is called the Takagi-diagonalization of a complex symmetric matrix

M . To compute the values of the diagonal elements of m, one may simply note that
Q'MM'Q" =m?.
M M7 is hermitian, and thus it can be diagonalized by a unitary matrix. Thus, the m; of

the Takagi diagonalization are the non-negative square-roots of the eigenvalues of MM,

In terms of the mass eigenstates,

L = ie""T"8,8 — tmy(gig +€MeM



The Dirac fermion

A charged fermion has twice the number of degrees of freedom as the neutral fermion. If
x and 7 are oppositely charged and degenerate in mass, then the corresponding free-field
Lagrangian is:

& = ix'7"0x + in'"Oum — m(xn + x'n') .
Together, x and nT constitute a single Dirac fermion. The corresponding mass matrix
is (2 ™). One could Takagi-diagonalize this matrix, although the corresponding mass

eigenstates would not be eigenstates of charge.

The solutions to the corresponding Dirac field equations are:

g —
1D T

@) = Y [ Grrsiagoyis (2B e e 4 yu(B ) B )]
s p B A

d3ﬁ i —> — —ip-:L’ —> T — ip-.fE-
T]a(33) - ;/ (27T)3/2(2Ep)1/2 _xa(p, S)b(pa 8)6 _I_ ya(p7 S)CL (pa 8)6 | :




More generally, for a collection of interaction-eigenstate charged fermion pairs X (),

ﬁé(a:) the free-field Lagrangian is:
Y = ZXJHEH@qu ‘|_7/77 O_,ua,un . sz)zzﬁj B MZJXT ﬁg

where M'; is an arbitrary complex matrix, and M, = (M";)*. We diagonalize the mass
matrix by introducing mass-eigenstates x(z) = L™ 'x(x) and n(z) = R 'H(x) where L

and R are unitary matrices that are chosen such that:
L"MR=m = diag(mi, mo, .. .),

with the m; real and non-negative. This is the singular-value decomposition of linear
algebra, which states that for any complex matrix M, the unitary matrices L and R above

exist. Due to
L"(MMYL* = RI(IM"M)R = m?,
the m,; are the non-negative square roots of the eigenvalues of MMT (or equivalently,

MTM). In terms of the mass eigenstates,
L =iy 0“8,0(@ + mT “@m — mz(xm +x' 77 )

The mass matrix now consists of 2 X 2 blocks (72Z ng) along the diagonal.



‘ Feynman rules for two-component fermions I

The rules for assigning two-component external state spinors are then as follows.

e For an initial-state left-handed (3, 0) fermion: x.
e For an initial-state right-handed (0, 3) fermion: y'.
e For a final-state left-handed (3, 0) fermion: zl

e For a final-state right-handed (0, 3) fermion: y.

The two-component external state fermion wave functions are distinguished by their Lorentz
group transformation properties, rather than by their particle or antiparticle status as in

four-component Feynman rules. These rules are summarized in the mnemonic diagram:

L (3,0) fermion

T CUT

Initial State Final State

yT

R (0, 3) fermion



Propagators

Z To(P, $)T (P, s)

(0| Té’a(w)ég(y) 0)pr = p? — m2 + e
Z (7] (p7 S)yﬁ(pa S)

(0| Tfa(w)ﬁﬁ(y) 0)pr = p2 — m2 + je
Z (7] (p7 S)CUﬁ(pv s)

(0| de(a:)ﬁ_g(y) 0)pr = p? — mz T e
Z C1304(1)7 S)yﬁ(p7 S)

(0| Tﬁa(w)fﬁ(y) 0)pr = p? — m2 + e

where FT indicates the Fourier transform from position to momentum space. These results

have an obvious diagrammatic representation

P b,
iP5 ip-c*P 1m 59 im 5.8
p2 —m2 g p2 —m2

p2_m2 p_mQ

Arrows on fermion lines always run away from dotted indices at a vertex and toward undotted

indices at a vertex.



The arrow-preserving propagators can be described by one diagram:

p PO —ip-5°

— L
- g _—
B o p? — m? p? — m?

Here the choice of the o or the @ version of the rule is uniquely determined by the height of

the indices on the vertex to which the propagator is connected.

For the case of charged fermions, we write down the rules for propagators involving the

charged pair x and n:

p p
—»  —
X 3 - a X Y Jé; g all
ip-aaﬁ- —ip-Eﬁa z’p-aag _ip.gﬁa
p2 — m?2 oL p2 — m?2 p2 — m?2 oL p2 — m?2
6 (8% B «
m - m
5¢ 5.7



Fermion—scalar interactions

The most general set of interactions with the scalars of the theory cﬁf are then given by:
ATk L 5 g I~ 2L 5td otk
Ly = =3V b1y — 3V b

where Y7 = (Y17%)* and ¢! = (¢1)*. The flavor index I runs over a collection of real
scalar fields (; and pairs of complex scalar fields ®; and & = (&;)* [where a complex
field and its conjugate are counted separately]. The Yukawa couplings Y1 are symmetric

under interchange of 5 and k.

The mass-eigenstate basis 1) is related to the interaction-eigenstate basis 13 by a unitary

rotation: X
£ Q 0 O £
) = x| =U¢y=10 L O x | s
i) 0O 0 R n

where €2, L, and R are constructed as described previously. Likewise for the scalars:

$ = V. Thus, in terms of mass-eigenstate fields:
Line = =5V 1o — 5Yiue T

where Y1k = v, I Jyu, Fy T mn



Fermion—gauge boson interactions

In the gauge-interaction basis for the left-handed two-component fermions the corresponding

interaction Lagrangian is given by
Lint = _gaAZ"yzEu(Ta)ijlzj )

where the index a labels the (real or complex) vector bosons A/ and is summed over. If
the gauge symmetry is unbroken, then the index a runs over the adjoint representation of
the gauge group, and the (T“)@-j are hermitian representation matrices' of the gauge group
acting on the left-handed fermions. There is a separate coupling g, for each simple group or

U(1) factor of the gauge group G.

In the case of spontaneously broken gauge theories, one must diagonalize the vector boson
squared mass matrix. The above form still applies where AZ are gauge boson fields of
definite mass, although in this case for a fixed value of a, g, T is some linear combination
of the original g,T" of the unbroken theory. Henceforth, we assume that that the AZ are

the gauge boson mass-eigenstate fields.

TFor a U (1) gauge group, the T'“ are replaced by real numbers corresponding to the U(1) charges of the
left-handed (5, 0) fermions.



In terms of mass-eigenstate fermion fields,
L = — AL T (G
where G* = g, U'T*U (no sum over a).

Consider separately the case of gauge interactions of charged Dirac fermions. Consider pairs
of left-handed (%, 0) interaction-eigenstate fermions x; and A" that transform as conjugate
representations of the gauge group (hence the difference in the flavor index heights). The

Lagrangian for the gauge interactions of Dirac fermions can be written in the form:
L = —9a 4R TU(T") R + 9aALT, T (T

where the AZ are gauge boson mass-eigenstate fields. Here we have used the fact
that if (T'*);/ are the representation matrices for the x;, then the #; transform in the
complex conjugate representation with generator matrices —(T'*)* = —(T)”. In terms

of mass-eigenstate fermion fields,
L = = Al X TG Ixs — 0l FU(GR) ]

where G% = g, L'T*L and G% = g, R'T*R (no sum over a).



Feynman rules for fermion interactions

J, &
T —iYF5,0 or  — Y IR5s0
k, B
J, &
_I_ - — < _ZYIjk(Saﬁ or - ZYI]k(SIBOz
k, B
1, &
—’I:(Ga)ij E/O;B or ’I:(Ga)ij O upBa
a p
J, B
_i(GATY or ig(Ga) ouse
a’alu’ B
Xj

’I,(CTYCLR)@‘7 Eﬁa or _,[/g(GaR)@j O-uozB




‘ Rules for invariant amplitudes I

e When computing an amplitude for a given process, all possible diagrams should be drawn

that conform with the rules for external wave functions, propagators, and interactions.

e Starting from any external wave function spinor, or from any vertex on a fermion loop,
factors corresponding to each propagator and vertex should be written down from left to
right, following the line until it ends at another external state wave function or at the

original point on the fermion loop.

e |f one starts a fermion line at an x or y external state spinor, it should have a raised
undotted index in accord with our summation conventions. Or, if one starts with an al
or y', it should have a lowered dotted spinor index. If one ends with an x or y external
state spinor, it will have a lowered undotted index, while if one ends with an z' or y!
spinor, it will have a raised dotted index. The preceding determines whether a o or &

rule should be used.

e A relative minus sign is imposed between terms contributing to a given amplitude
whenever the ordering of external state spinors (written left-to-right) differs by an odd

permutation.

e Each closed fermion loop gets a factor of —1.



With a little practice, one can write down amplitudes immediately with all spinor indices

suppressed. Amplitudes generated according to these rules will contain objects of the form:
M = 2’122’2

where z1 and z, are each commuting external spinor wave functions z, z', Y, or y and X
is a sequence of alternating o and & matrices. The complex conjugate of this quantity is
given by

M = 222 zl
where >J,. is obtained from X by reversing the order of all the o and @ matrices, and using

the same summation convention for suppressed spinor indices. We reiterate that:

« &

« and &

governs the summation of undotted and dotted indices.

Note that different graphs contributing to the same process will often have different external
state wave function spinors, with different arrow directions, for the same external fermion.
Furthermore, there are no arbitrary choices to be made for arrow directions. Instead, one

must add together all Feynman graphs that obey the rules.



‘ Self-energy functions and pole masses I

After diagonalization of the fermion mass matrix, the mass-eigenstates consist of neutral
Majorana fermions &, and Dirac fermion pairs x, and 7,. The tree-level fermion mass
matrix, mij, is made up of diagonal elements m; and 2 X 2 blocks (ng WOLE) along
the diagonal, where the mjy and my are real and non-negative. To maintain our index
summation conventions, we define m;; = m*. Note that mikmkj = mikmkj — m?ég

is a diagonal matrix. The full, loop-corrected Feynman propagators are defined by
(0] T?Pai(x)w;j(y) 0)pr = ip-o,; C (%),
O] T (@)9] () [0)pr = ip-7** (CT) 5(5")
(O] Ty (2)9 ) () [0)pr = %5 D7 (p7) ,
(0] T¢ai($)¢?(y) 0)pp = 5046 Ev;j(P2) :

which can be represented diagrammatically by:

b b
- -
—— - —— - —— - —— >
1 i 7 7 7 7 1 J



Starting at tree-level the full propagator functions are given by:

Cij=5ij/(l)2—m?)—|—...
DV =m"/(p" —m]) + ...
D =m;/(p°—m) + ...,

with no sum on ¢ in each case. They are functions of the external momentum invariant
p® and of the masses and couplings of the theory. In general, DY is a complex
symmetric matrix, and 51-]- can be obtained from it by taking the complex conjugate of all
Lagrangian parameters appearing in its calculation, but not taking the complex conjugates
of Euclideanized loop integral functions, whose imaginary (absorptive) parts correspond to

fermion decay widths to multi-particle intermediate states.

We organize the computation of the full propagators in terms of one-particle irreducible
(1P1) self-energy functions, which are given by the sum of all Feynman diagrams (excluding

the tree-level) that contribute to the 1Pl two-point Green functions.



A first diagrammatic identity (with momentum p flowing from right to left):

o B o B

—] e = <

i ] i ]
a § 6 a 5 ) 6
i k ¢ j i k ; j

Similar diagrammatic identities can be constructed for the three other full loop-corrected

propagators. The resulting four equations can be neatly summarized by the following matrix
diagrammatic identity:

- i P > e 1 0
= +
- > e - s 0 1

The corresponding algebraic representation can be written as F' = T" + T'SF', where F' is
the matrix of full loop-corrected propagators, 1" is the matrix of tree-level propagators and

S is the matrix of self-energy functions. Multiplying on the left by 77~* and on the right by
FlyieldsT™' = F '+ 8. Thus, F = [T""'—-8S]".



In pictures:

Explicitly, T and T"~! are given by:

-~ e 1 ’me 5@5 ’I:p'O'aB'(Sij

2 . . . o )
- s—mi \ip-g® s, imYs%,

~1 L _ .
. im" 6," —ip 0,30,

- —’ip'Edﬁ(Sij ’imij 5dﬁ'

Thus, one obtains a matrix equation for the full propagator functions:

—1

iD ip-o C i(m + Q) —ip-o(1—27)
ip-o CT iD —ip-7 (1 — ) i(m + Q)

where 1 is the N X N identity matrix.



The pole mass

To determine the pole mass, go to rest frame of the fermion. The spinor-index dependence
is now trivial. Setting p* = (4/s; 0), we search for values of s where the inverse of the
full propagator has a zero eigenvalue. This is equivalent to setting the determinant of the
inverse of the full propagator to zero. Using the well-known formula for the determinant of

a block-partitioned matrix:

P Q —1
det = det P det (S — RP "Q),

R S

one finds that the (in general complex) poles of the full propagator, spole,; = Mf — 'y M,

are the solutions to the non-linear equation:
det [s1— (1 -E) '(m+ Q)1 -E) '(m+ Q)] =0.

with s = p?. This can be solved iteratively by first expanding the self-energy function
2
J
quantities sp01e,; are renormalization-group and gauge invariant physical observables.

matrices =, © and € in Taylor series in p* about either m? or MJ2 The complex pole mass



‘ Conventions for fermion names and fields I

There is a one-to-one correspondence between the Majorana fermion particle names and the
left-handed (3, 0) fields, but for Dirac fermions there are always two distinct two-component
fields that correspond to each particle name. We shall always label fermion lines with the

two-component fields, rather than the particle names, with the following conventions:

e Initial-state external fermion lines (which always have physical four-momenta going into
the vertex) in Feynman diagrams are labeled by the corresponding unbarred (left-handed)
field if the arrow is into the vertex, and by the barred (right-handed) field if the arrow is

away from the vertex.

Initial-state e :

Initial-state e™:

- 0t
Initial-state IV;:

566
"



e Final-state external fermion lines in complete Feynman diagrams (which always have
physical four-momenta going out of the vertex) are labeled by the corresponding barred
(right-handed) field if the arrow is into the vertex, and by the unbarred (left-handed)

field if the arrow is away from the vertex.

Final-state e :

Final-state e™:

- Of
Final-state IV;:

L
o

e Internal fermion lines in Feynman diagrams are also always labeled by the unbarred,
left-handed field(s). Internal lines containing a propagator with opposing arrows can

carry two labels.



e In the Feynman rules for interaction vertices, the external lines are always labeled
by the unbarred left-handed field, regardless of its arrow direction. Two-component
fermion lines with arrows going away from the vertex correspond to dotted indices, and
two-component fermion lines with arrows going toward the vertex always correspond to
undotted indices. This applies also to complete Feynman diagrams (e.g., self-energies)

where the initial state and the final state roles are ambiguous.

— . .
€0, or —1e0,34
. —ap . .
—1€0, or 1€0 184

The two-component Feynman rules for the QED vertex



Fermion name Two-component fields
¢~ (lepton) ¢, Al
¢T (anti-lepton) 7,0
v (neutrino) v, vl
v (antineutrino) v, vl
q (quark) q,q"
q (anti-quark) q.q'
f (quark or lepton) f, TT
f (anti-quark or anti-lepton) 7, T
N; (neutralino) X? : X?T
éj (chargino) Xj_ , Xz'_T
CN'Z_ (anti-chargino) X; X;"T
g (gluino) 7,9

Fermion and anti-fermion names and two-component fields in the Standard Model and the MSSM. For massive

neutrinos, add 7 and FT).



‘ Examples from the MSSM I

We focus on some processes involving the Majorana neutralino states. The

mass matrix for these states in the E—Wo—ﬁd—f[u basis is given by:

( Ml 0 _%glvd %glvu \
0 M,  39va  —3gU4
Mo = ,
—39'va 3904 0 —
\ %glvu _%Q’UU —H 0 )

where ¢’ = gtan Oy, v2 +v5 = (246 GeV)? and tan 8 = v, /vg. The Takag;

diagonalization (with unitary diagonalization matrix N) yields:

[N_l]T]WXoN_1 = diag(mﬁl, M, TR, mm) :



The Feynman rules for neutralino interactions with electrons and selectrons are given by:

X;.~ °
T ﬁ [gNi*2 + g/Ni*l} 5o
eL e
B
—ig'vV/2 N}, 5.
—iv2(me/va) Nj 84"
X;. ~©
R —iﬁ(me/vd)Ni*g 6a6
€R e 3

Feynman rules for the interactions of neutralinos with electron/selectron pairs in the MSSM. For each rule,
there is a corresponding one with all arrows reversed, undotted indices changed to dotted indices with the

opposite height, and the coupling (without the explicit %) replaced by its complex conjugate.



iM, = (—1) |i

Example 1. e e” — e, e,

There are two Feynman graphs (neglecting the electron mass):

e (P1.01) &7 (k) e p1.Ap) &, (k1)

A X’L X’L
el (pg,09) &g (ko)

ep (k2)

The matrix element for the first graph, for each neutralino NZ exchanged in the ¢t channel, is:

IM = z% (N,;; + N,L-*1 tan QW)] [—z’g\/§N7;1 tan HW] T

— o2
(k1 — p1) my.

The external wave functions are denoted by x; = (p,;, A\;), ¢ = 1,2 and analogously for

Yis a:,j, yj The matrix element for the second (wu-channel) graph is related to the t-channel

graph by the interchange of the two incoming electrons, e; < es:

’L(kl — pg)'O‘
(k1 — p2)? — m%

1

\55 (NZ2—|—N tan QW)} [—igﬁNil tan HW] To

’L(k‘l — pl)-a 1
2 Yz -

<
==



Note that since we have written the fermion wave function spinors in the opposite order
in M, compared to My, there is a factor (—1) for Fermi-Dirac statistics. Alternatively,

starting at the electron with momentum p; and using the & rule for the propagator,

—i(k1 — p2)- 0
(k1 — p2)* — m%

1

. 9

V2

1My = (Nz'*2 + N, tan QW)} [_igﬁNil tan QW] yI

Using yIEazz = :Ugayi (which holds for commuting spinors), we see that the two expressions
for M, coincide.

Thus, the total amplitude is given by:

M=M;+ M, ==xa- 0y2+y1b axs,

where
S 1
aMEg W(k“—pl)ZNﬂ(Nw—l—N tan@w)—2,
CwW my
1=1 N;
s 1
b = — g W(k“—pz)ZNzl(sz‘i‘NzltaneW)—z’
Cw =1 u_mN

1

and sy = sin Oy, cyy = cos Oy, t = (p1 — k1)2 and u = (p1 — k2)2.



Squaring the amplitude yields

|./\/l|2 = (z1a-0Y2) (y2a"-0%1) + (§1b-Tx2) (T2b"-Ty1)
—|— (331&'0'@2) (ing*-Eyl) + (’gleCUg) (yga*-ail) .

Averaging over the initial state electron spins, the a,b” and a™,b cross terms are

proportional to m,. and can thus be neglected in our approximation. We get:

| Z |./\/l|2 = 2+ Trla-0 p2G a0 p1-7) + 1 Tr[b-G pa-o b*-T p1-0] .
A1,A2

Evaluating the traces yields:

1 2 1 4 2 2 2
7 E (M[” = 79" tan” Ow (tu — m; m;
ALAg

4
X Z leNi*l(N;2 —|— N;l tan QW)(NZQ —|— Nil tan Qw)
1,7=1

1 1
+

(t=mZ ) —m2) " (u—m2)(u—m2)




In obtaining these results, we have employed the identities:

Tr[(k1 — p1)-0 p2-7 (k1 — p1)-0 p1-7| = Tr[(k1 — p2)-T p2-0 (k1 — p2) T p1-0]

— ot — 2 2
=tu —mg Mg,

Thus, for s = (p1 + p2)2, the differential cross-section is:

2, 2
do o’ <tu - mELm€R>

dt 4s?, ¢

4
X Z leNi*l(N;2 + N;l tan QW)(NzQ + N;; tan Qw)
ij=1
1 1
+

(t=mZ ) —mi) " (u—ms )(u—m? )




—~.

Example 2: e e — epe,

Again, in the limit of vanishing electron mass, there are two Feynman graphs, which are
related by the exchange of identical electrons in the initial state or equivalently by exchange

of the identical selectrons in the final state.

NS g (k1) a*{m) ______ g (k1)
A\
X5 AX?
el (P2 r2) T eplke) 2 N1 ep (k2)

The amplitude for the first graph is:

i 7T
Y1Ys 5
(kl_pl)Q_m% 192

1

2
iM, = (—ig\/§Ni1 tan ew)

for each exchanged neutralino. The amplitude for the second graph is:

. . 2 imﬁi bt
IiM, = (—zg\/§N¢1 tan 9W> % 22?2 Y1Ys -

1 — P2)° — m
N

(2

Since we have chosen to write the external state wave function spinors in the same order in

M and M, there is no factor of (—1) for Fermi-Dirac statistics.



The total amplitude squared is:

4
IM|? = 4g" tan” 0w (y1yd) (y21) > (Nv:l)Q(Nfl)QmNimﬁj
ij=1

1 n 1 1 1

X
t — m2 u — m2 t — m=~ U — m=
N; N; N; N;

The sum over the electron spins is obtained from

Z (9192)(y2y1) = Tr[pe-op1-0] = 2p2-p1 = s .
A1,A2

Hence, the spin-averaged differential cross-section is:

do  mwa? my mN
— = S (N (s
W 1,7=1
1 n 1 1 n 1
X
t — m2 u — m2 t — m2 u — m2
N; N; N; N;

Note that when integrating over the 47 solid angle to obtain the total cross-section, one

must multiply by a factor of 1/2 due to the identical sleptons in the final state.



Example 3: e7e™ — e, €,

Again, in the limit of vanishing electron mass, there are two Feynman graphs,
which are related by the exchange of identical electrons in the initial state or
equivalently by exchange of the identical selectrons in the final state. The

contributing graphs are exactly like the previous example, but with all arrows

reversed.
e(pi,\1) _ep (k1) e(p,A1) ep (k)
A 0 \\ 0
X; X3
e(pr2) 1 ep (k2) . ep (ko)
e (p2,M\2)

The computation of the invariant amplitude and cross-section is very similar

to the previous example, so the details will be omitted here.



‘ Four-component spinor notation I

The correspondence between the two-component and four-component spinor language is
most easily exhibited in the basis in which ~5 is diagonal (this is called the chiral

representation). In 22 blocks, the gamma matrices are given by:

% _ s B
no_ 0 UaB .. 0_1_.2 3 g 0
Y= V5 =Y Y Y Y =
ghab 0 0 5d5

The chiral projections operators are: P, = 3(1 — v5) and Pr = 5(1 + 75).

In addition, we identify the generators of the Lorentz group in the (3,0) @ (0,3)

representation:i

Lt — Yop v oo 0
32 51[7,7]:
0 FHra
o B

YIn most textbooks, 31 is called "Y' . Here, we use the former symbol so that there is no confusion with

the two-component definition of "



A four component Dirac spinor field, W(x), is made up of two mass-degenerate

two-component spinor fields, x.(x) and n,(x) as follows:

Xa(T)
U(x) =

n' “(x)

Note that P; and Ppgr project out the upper and lower components, respectively. The Dirac

conjugate field U and the charge conjugate field ¥¢ are defined by
U(a) =w'A = (n"(2), x}),

. T Na(T)
U(x)=CVU (x) = :

x ()

where the Dirac conjugation matrix A and the charge conjugation matrix C' satisfy

AP AT = 41T Clyre = -4,



In the chiral representation, A and C' are explicitly given by

C _ _,_YSB—]- _ Eaﬁ O

5.2 0 0 €

Note the numerical equalities, A = ~° and C = iv%~+?, although these identifications do

not respect the structure of the undotted and dotted indices specified above.

One can relate bilinear covariants in two-component and four-component notation.

U Wy = mi&s + Eln)

T iys Wy = —miés + Elm)

Ty Wy = 6,576 — nyatm
Uy s Wy = —516“52 — 77;5“771

U S Wy = 2(motés + €5 nl)

U S s Wy = —2(n10" €y — EIEWU;) :



Relating bilinear covariants in two-component and four-component notation

§1(x) §2(x)
\Ijl(m) = ) \112(:6) =
ey ns(x)
U P U,y = més WSPLUS = E1my
T, Prl, — it WePRUS = nligl
1PrYo = £1m; 1TR¥ 2 = 7T1S9
EEPL\IJQ = 5152 E1})L\IJ§ — M2
U, Pt = ¢lel WPy = nin
15R¥* 9 152 1TR¥2 = "7
Uy PLW, = £]5"¢ Tyt PLUs = nigin,
EEWMPR\I/C = 510“55 El’Y'UJPR\IJZ — 7710"“77;
Elz’UVPL\IJQ = 2’)710'“’/52 EiZ’UJVPL\IJS = 2510”“’/?72
U\ S PRy = 2€1aMnl | e PRus = 2nlatvel

MY = %[fy“, ~v"]. Note that we may also write: W y*Pr¥, = —7725“771, etc.



For Majorana fermions defined by W, = ¥, = CEL, the following additional conditions

are satisfied:

W Waye = Wa¥a,
UarysPare = Uaravs W
Uan " Uare = =Wy " W,

Uy vs¥are = Uy vs Wt
U W a0 = — U,

Ui My W = — W3 v Wy .

In particular, if W1 = W0 = W)y, then

EM’YM\I/M == EMZMV\I/M = EMZFW’Y5\I/M =0.
One additional useful result is:

Uany ' PrVare = =Wy " Pr¥an .



‘ Four-component spinor wave functions I

The two-component spinor wave functions are related to the traditional four-component

spinors according to:

To (P S) N —
u(p, s) = , u(P,s) = (¥ (B, s), ©4(PD,9))
y (B, s)
ya(ﬁa 3) N :
U(ﬁ7 S) — ’ /l_)(ﬁa S) — (CIj (ﬁa 8)7 yd(ﬁa S)) )
2" (P, s)

where v(P, s) = Ca(p, s)’, and s = +1. The spinor wave functions u and v satisfy the

Dirac equation,
(p —m)u(p,s) =P+ m)v(p,s) =0.

where p = #_ For massive fermions, we also have:
7

(25758 — 1) u(P; s) = (25758 — 1) v(P,s) = 0.



The spin projection operators for massive fermions read:
u(P, 5)a(P, s) = 2(1 + 25758) (p +m)
o(F, )0(B, 5) = 3(1 + 25758) (p — m) |
The corresponding Bouchiat-Michel formulae are:

u(P, s )u (B, s) = 5 [0, + V5B.] (B + m),

v(B, 8)0(P, 8) = 5 [00s + v5Bua] (p —m),

For massless fermions, the helicity spinors are eigenstates of ~;

’75“’(?77 >\) — 2>\U(ﬁ, >\) ) ’YSIU(ﬁa >\) — —2>\’U(ﬁ, >\) :

The latter result can be derived from the former by putting S* = p"/m 4+ O(m/FE) and
applying the Dirac equation before taking the m — 0O limit. Thus, the massless fermion

helicity projection operators are:

u(P, N a(P; A) = 3(1 + 2Xy;) P,

o(B. NP, N) = 5(1 — 2A5) p.



The corresponding Bouchiat-Michel formulae are:

u(p, N)a(p, A) = 2(1 + 22v5) pSyw + 2vs[8'man + $7m0] B

v(p, N)5(Dy A) = L(1 — 20v5) POy + 2vs[8 o + $275,] B

Finally, the spin-sum identities are given by:

; w(P, s)u(P,s) =p+m,
2; (P, $)0(PB,s) =p —m,
Z; w(P, s)v’ (B, s) = (p+m)C",
; a (P, s)0(P,s) = C ' (h —m),
; o' (B, $)u(PB,s) = C~ ' (p+m),

> (B, s)u’ (B,s) = (p—m)C" .



‘ Rules for four-component Majorana fermions I

Consider first the Feynman rule for the four-component fermion propagator. Virtual Dirac
fermion lines can either correspond to W or W Here, there is no ambiguity in the

propagator Feynman rule, since for free Dirac fermion fields,
s F—
(O] T[¥(x)¥ "(y)] [0) = (O] T[¥"(z)¥(y)] |0) ,

so that the Feynman rules for the propagator of a W and W° line, exhibited below, are

identical. The same rule also applies to a four-component Majorana fermion.

p2 — m? + ie

Consider a set of neutral Majorana and charged Dirac fermions interacting with a neutral

scalar or vector boson. The interaction Lagrangian in terms of two-component fermions is:

Ling = —2(A7€,65 4+ \ijeT'eM) g — <nzxmj+nﬂx“n})¢

—G7 VT A, — (G X T s + (Gr)in T ;) AL,



*
i
matrix with ;7 = (k';)", and G, GG and G are hermitian matrices. Converting to

where X\ is a complex symmetric matrix with A\ = \*., k is an arbitrary complex

four-component spinors, the Feynman rules are:

“““ —i()\ijPL -+ )\ijPR)

—i"yu[Gi‘jPL - GjiPR]

\chi
o —i(k'; Py + k' Pg)
gl
—ivu[(GL) Pr + (GR){ Pg]
or or

ivu[(GL)i PL + (GRr)i’ Pr]




The arrows on the Dirac fermion lines depict the flow of the conserved charge. A Majorana
fermion is self-conjugate, so its arrow simply reflects the structure of Ling; i.e., Wiy (W]
is represented by an arrow pointing out of [into] the vertex. The arrow directions determine

the placement of the uw and v spinors in an invariant amplitude.

For vertices involving Dirac fermions, one has a choice of either using the Dirac field or its
charge conjugated field. The Feynman rules corresponding to these two choices are related,

due to the following identity satisfied by anti-commuting fields,

Tt = —vTcT'rCY, = §,cr7CT, = g0, T,

? J

where the sign np = +1 for I' = 1, v5, v"v5 and np = —1 for I' = ~*, 3#Y, 3 ~q.

Next, consider the interaction of fermions with charged bosons, where the charges of ®, W

and x are assumed to be equal. The corresponding interaction Lagrangian is given by:
Loe = —P[(51)" 360" + (52)1;€ "X V] — @T[(K2)&ix; + (m)ﬂ&?n;]
~Wul(G1); X736 — (G2)i€"'T"n'] = WI(G1)i€"5"x; — (G2)nja"&]

where k1, ko, GG1 and G5 are complex matrices. Converting to four-component spinors, the

corresponding Feynman rules are:



©Pr + k2i PR)
—’I:(Kjl §L°L
__.»__
or P Yari jPR)
: ijPL + K1
. —’I:(KJQ
__.<._
or @ o

G2;iPr)
7 GujPL _
—iyH(

or

G1' Pr)
v (G2 Pr

jiPR)
H GlijPL — G2
—iy*(

or

G1';Pr)
jipR _
iy (G2



Labeling fermion lines in Feynman diagrams

One is free to choose either a W or W€ line to represent a Dirac fermion at
any place in a given Feynman graph. The direction of the arrow on the V¥
or U¢ line indicates the corresponding direction of charge flow.8 Moreover,
the structure of L;,; implies that the arrow directions on fermion lines flow
continuously through the diagram. This requirement then determines the

direction of the arrows on Majorana fermion lines.

The Feynman rules for the external fermion wave functions are the same for
Dirac and Majorana fermions:

. incoming W [or W] with momentum P’ parallel to the arrow direction,

°
s
N
2z

. outgoing W [or U] with momentum P parallel to the arrow direction,

e o

A gl

"31 :“51
NS

[}
|
“dl

, 5): outgoing W [or W] with momentum ' anti-parallel to the arrow direction,

. incoming ¥ [or W] with momentum § anti-parallel to the arrow direction.

(P

8Since the charge of W€ is opposite to that of ¥, the corresponding arrow direction of the two lines point

in opposite directions.



Construction of invariant amplitudes involving Majorana fermions

When computing an invariant amplitude, one first writes down the relevant Feynman
diagrams with no arrows on any Majorana fermion line. The number of distinct graphs
contributing to the process is then determined. Finally, one makes some choice for how to
distribute the arrows on the Majorana fermion lines and how to label Dirac fermion lines
(either W or ¥) in a manner consistent with the Feynman rules for the interaction vertices.
The end result for the invariant amplitude (apart from an overall unobservable phase) does

not depend on the choices made for the direction of the fermion arrows.

Example 1: U(p1)W(p2) — P(k1)P(k2) via Wj-exchange

The contributing Feynman graphs are:

s > i S ) > ,

e = - - - Pe < N

Following the arrows in reverse, the invariant amplitude is easily computed.



i(ph — K1+ m)

t — m?

iM = (—i)*5(By, s2) (k1 P, + K PR) [

+i(’¢1 — P2+ m)

u — m?

] (k1 PL + ko Pr)u(PY, 51) 5

where t = (p1 — k1)?, u = (p2 — k1)? and m is the Majorana fermion mass. The sign of
each diagram is determined simply by the relative permutation of spinor factors appearing in

the amplitude (the overall sign of the amplitude is unphysical).

Exercise: Check that M is antisymmetric under interchange of the two initial electrons.

HINT: Taking the transpose and using v = u“ = C'@’ (the w and v spinors are commuting

objects), one easily verifies that:
’l_)(ﬁ27 82)FU(ﬁ1, Sl) — _nF’l_j(ﬁb Sl)Fu(ﬁ27 32) ’
where as before np = +1 for I' = 1, v5, v"v5 and np = —1 for I' = ~*, 3#Y, 3H~5.

Example 2: WU (p1)W (p2) — Var(ps)War(ps) via charged P-exchange

Neglecting a possible s-channel annihilation graph, the contributing Feynman graphs can be

represented either by one of two sets of diagrams.



\/j > : > Uy
Diagram set (i): ;
|
v > : > Wy
or an alternative set of diagrams:
/] > : > Uy
Diagram set (ii): :
|
v < : < Wy

WC

N4

\{
War
W
\{
Was

The amplitude is evaluated by following the arrows in reverse. Using:

/I_}(ﬁ% 32)F’U(ﬁ4, 34) — _nf‘ﬂ’(ﬁéla S4)F’U,(ﬁ2, 32) )

one can check that the invariant amplitudes resulting from diagram sets (i) and (ii) differ by
an overall minus sign, as expected due to the fact that the corresponding order of the spinor
wave functions differs by an odd permutation [e.g., for the t-channel graphs, compare 3142
and 3124 for (i) and (ii) respectively]. For the same reason, there is a relative minus sign

between the t-channel and u-channel graphs for either diagram set [e.g., compare 3142 and

4132 in diagram set(i)].



If s-channel annihilation contributes, its calculation is straightforward.

\ W

v Wy
Relative to the t-channel graph of diagram set (ii), this diagram comes with an extra minus

sign [since 2134 is odd with respect to 3124].

In the computation of the unpolarized cross-section, non-standard spin projection operators

can arise in the evaluation of the interference terms, e.g.ﬁI
— T, = T _T/, > — = —1
D (P, s)v' (B,s) = (p+m)C", > al (P, s)v(p,s) =C (p—m),

which requires additional manipulation of the charge conjugation matrix C'. However, these
non-standard spin projection operators can be avoided by judicious use of spinor wave

function product relations of the kind displayed on the previous two pages.

Ysee Appendix D of G.L. Kane and H.E. Haber, Phys. Rep. 117 (1985) 75.



