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M(other)-theory or M   -theory

2
• W. Lamb (1955): “The finder of a new elementary particle used to be rewarded 

by a Nobel Prize, but such a discovery now ought to be punished by a $10,000 fine” 
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• Nothing (no need to introduce the X0 mass in the game)
– invariant mass endpoint methods (need n>2 on either side)
– invariant mass cusp method (requires an s-channel resonance)
– MCT methods (need only n>0 on each side)

• Use some prescription to fix them somehow
– MT2 methods (need only n>0 on each side)

• Compute them exactly
– “polynomial” methods (if n>2 on each side or if n>3 on one side)

• Some (hybrid) combination of the above 3

What to do about the LSP momenta?

p=???

p=???
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Anatomy of an event
• Visible particles

– known: number, 
masses, momenta
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• Invisible particles
– unknown: number, masses, momenta
– known: total PT
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• Invariant mass variables are constructed by:
– (optional) partitioning and lumping within each partition
– (optional) transversifying w.r.t. the beam axis (NB! two different ways)

– (optional) transversifying w.r.t. the upstream PT

– (mandatory) fixing invisible momenta by minimizing CME:  
√
smin
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I. Basic definition of  

• What is the minimum possible value of the CM energy? 

√
smin

• No partitioning; lump the visibles; separate the invisibles
Konar, Kong, KM 2008

Qµ
1 Qµ

5

M̃1 M̃5

√
smin(Minv) =

�
E2 − P 2

z +
�

M2
inv+ �P 2

T ; Minv =
Ninv�

i=1

M̃i

(E, �PT , Pz) ≡ Pµ =
Nvis�

i=1

Pµ
i
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Applications of 
• Single semi-invisibly 

decaying particle
– SM Higgs to tt-bar
– endpoint at the parent mass

6

• A pair of semi-invisibly 
decaying particles

– direct tt-bar production
– peak at the total parent mass

√
smin
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Subsystem
• Objection: “you should not include objects from ISR and UE” 

– Solution: very good, then don’t:

• Repeat the constrained minimization and find:
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Applications of subsystem 
• tt-bar events

– identify the WW threshold 
from the 2 lepton subsystem

8

• GMSB SUSY events
– identify the N1N1 threshold from 

the 2 photon subsystem

√
smin

Konar, Kong, KM, Park 2010
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M(1) M(2) M(3)= =

II. Partitioning and lumping together
• Assuming N parents of equal mass, partition as 

9

Parent 1 Parent 2 Parent 3

In
vi

si
bl

e 
3

In
vi

si
bl

e 
1

In
vi

si
bl

e 
4

In
vi

si
bl

e 
5

In
vi

si
bl

e 
2

Vi
si

bl
e 

2

Upstream PT

Vi
si

bl
e 

8

Vi
si

bl
e 

6

Vi
si

bl
e 

4

Vi
si

bl
e 

3

Vi
si

bl
e 

9

Vi
si

bl
e 

1

Vi
si

bl
e 

5

Vi
si

bl
e 

7
• Now the invisible momenta are chosen to minimize 

the mass of any parent:

MN (M̃(1), M̃(2), M̃(3)) ≡ min
�
M(a)

�

M(1) = M(2) = M(3)

Barr,Khoo,Konar,Kong,Lester,KM,Park 2010
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III. Transversification (once)
• So far Smin and MN are genuine (1+3)-dim. quantities
• One often uses (1+2)-dim. “transverse” quantities

– the transverse projection is not unique! there are 
two (inequivalent) ways to do it:

• Type “T”: mass preserving
• Type “t”: velocity preserving

– the operations of transversification and partitioning 
do not commute! Depending on the particular  
order, there are different types of variables, e.g.:

• M2T (the original Cambridge variable MT2)
• M2t

• MT2

• Mt2
10

Barr,Khoo,Konar,Kong,Lester,KM,Park 2010
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Pµ ≡ (E, �PT , Pz) P 2 = M2

�pT = �PT

eT =
�

M2 + �P 2
T

p2 = M2 = P 2

Transversification alternatives
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T tT

�pt = �PT

v2 = 1− M2

E2
= V 2

et = Esinθ = E
PT�

P 2
T + P 2

z

• preserves the mass 
• no Pz dependence
• test mass remains 

• preserves the velocity
• test mass disappears during 

minimization (Qz->infinity)  

ẽt = QT

�

1 +
M̃2

Q2
T +Q2

zẽt =
�

M̃2 +Q2
T
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The recipe
• Partition the observed particles into N parent sets plus 

a separate set for Upstream objects
• Do one then the other

– Lump the energies and momenta of the visible particles 
within each set

– Transversify all energies and momenta

• Fix the unknown momenta of the invisible particles by 
minimizing the largest parent transverse mass

• Record the minimum value of the largest parent mass
• For any value of N, there are 4 different cases:

– MNT, MNt, MTN, MtN

12
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Mathematical identities for N=1
• M1T=M1=         for any invisible test mass 

– the “T” transverse mass is a (1+3)-dim. quantity!

• HT=Mt1 (neither depends on an invisible test mass)
– reveals the physical meaning of HT in the         sense

• HT=MT1(0), but not for general invisible test mass

13

√
smin

Barr,Khoo,Konar,Kong,Lester,KM,Park 2010
√
smin
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Mathematical identities for N=2
• M2T=M2 for any invisible test mass 

– the “2T” type Cambridge variable is a (1+3)-dim. quantity!

• MT2(0)=Mt2 for massless visibles 
• Notice the different shapes near the upper endpoint

14

Barr,Khoo,Konar,Kong,Lester,KM,Park 2010
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Transversification (twice)
• Having projected on the transverse plane, one can 

additionally project on the direction of Upstream PT: 
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• The endpoints of “perp” 
distributions are stable 
against PT variations

Konar,Kong,KM,Park 2009
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• Very simple events (n=0 and n=1)
– good news: no combinatorial problem
– bad news: insufficient information, difficult to extract dark matter 

properties (mass, spin etc.)
– generally more SM background

• Very complex events (n=infinity [4]) 
– multijet events with 10-15 jets per event
– very severe combinatorial problem

16

The two interesting limiting cases

Tuesday, August 24, 2010
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17

1-Dim M2T  method
Konar,Kong,KM,Park 2009

Transverse M2T

• Basic idea: vary the LSP test 
mass and count how many 
events have M2T above the 
doubly transverse M2T endpoint

M2T⊥
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The other extreme:
very complicated events

• Let’s now do n=infinity 
• Imagine something very 

complicated like
– gluino pair production
– gluino decays to N2 and 2 

jets 
– N2 decays to N1 and 2 jets

• Typical jet multiplicity is 
about 10

• Exclusive reconstruction 
seems hopeless

18
Figure 9: Unit-normalized distribution of jet multiplicity in gluino pair production events, with each
gluino decaying to four jets and a χ̃0

1 LSP as in (5.1).

such event has on average ∼ 10 jets, presenting a formidable combinatorics problem.

We suspect that all9 mass reconstruction methods on the market are doomed if they

were to face such a scenario. It is therefore of particular interest to see how well the√
smin method (which is advertized as universally applicable) would fare under such

dire circumstances.

• In the second scenario, the gluino decays directly to the LSP via a three-body decay

g̃ → jjχ̃0
1 , (5.2)

so that gluino pair-production events would nominally have 4 jets and missing energy.

For concreteness, in each scenario we fix the mass spectrum as was done in [1]: we use the

approximate gaugino unification relations to relate the gaugino and neutralino masses as

mg̃ = 3mχ̃0
2
= 6mχ̃0

1
. (5.3)

We can then vary one of these masses, and choose the other two in accord with these relations.

Since we assume three-body decays in (5.2) and (5.1), we do not need to specify the SUSY

scalar mass parameters, which can be taken to be very large. In addition, as implied by

(5.3), we imagine that the lightest two neutralinos are gaugino-like, so that we do not have

to specify the higgsino mass parameter either, and it can be taken to be very large as well.

After these preliminaries, our results for these two scenarios are shown in Figs. 10 and

11, correspondingly. In Fig. 10 (Fig. 11) we consider the 8-jet signature arising from (5.1)

9With the possible exception of the MTgen method of Ref. [32], see Section 7 below.

– 24 –

Figure 8: The same as Fig. 6, but in addition to the two leptons, the subsystem now also includes:
exactly two b-tagged jets (black histogram); the two highest pT jets (blue histogram); or all jets (red
histogram). The dotted (yellow-shaded) histogram gives the true

√
s distribution of the tt̄ pair.

from the outside. As we see in Fig. 8, in the tt̄ case this is quite possible, although in general

it may be difficult in other settings, like the SUSY examples discussed in the next section.

5. An exclusive SUSY example: multijet events from gluino production

Since
√
smin is a fully inclusive variable, arguably its biggest advantage is that it can be

applied to purely jetty events with large jet multiplicities, where no other method on the

market would seem to work. In order to simulate such a challenging case, we consider gluino

pair production in supersymmetry, with each gluino forced to undergo a cascade decay chain

involving only QCD jets and nothing else. For concreteness, we revisit the setup of Ref. [1],

where two different possibilities for the gluino decays were considered:

• In one scenario, the gluino g̃ is forced to undergo a two-stage cascade decay to the LSP.

In the first stage, the gluino decays to the second-lightest neutralino χ̃0
2 and two quark

jets: g̃ → qq̄χ̃0
2. In turn, χ̃0

2 itself is then forced to decay via a 3-body decay to 2 quark

jets and the LSP: χ̃0
2 → qq̄χ̃0

1. The resulting gluino signature is 4 jets plus missing

energy:

g̃ → jjχ̃0
2 → jjjjχ̃0

1 . (5.1)

Therefore, gluino pair production will nominally result in 8 jet events. Of course, as

shown in Fig. 9, the actual number of reconstructed jets in such events is even higher,

due to the effects of ISR, FSR and/or string fragmentation. As seen from the figure, each

– 23 –
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Application of Smin to complex events
• One can measure SUSY masses in terms of the LSP mass. 

The peak of Smin marks (the sum of) the masses of all 
particles produced in the hard scattering

Konar, Kong, KM 2008
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Summary
• By partitioning, lumping, transversifying and minimizing, 

one can obtain a whole series of invariant mass variables 

20

• Which are most suitable, depends on the case at hand
• Some of these are old friends in disguise (HT, MT2, MT, ...)
• Watch for the exact meaning of the “transverse” index
• It helps to think of these variables as resulting from 

minimizing the total CM energy (LHC energy is “expensive”)
• Homework: figure out the meaning of the remaining variables 

on the second slide.

M1T�,M1t�,MT1�,Mt1�,MT�1,Mt�1

M1T⊥,M1t⊥,MT1⊥,Mt1⊥,MT⊥1,Mt⊥1

N = 1
M1,MT1,Mt1,M1T ,M1t

M2T⊥,M2t⊥,MT2⊥,Mt2⊥,MT⊥2,Mt⊥2

M2T�,M2t�,MT2�,Mt2�,MT�2,Mt�2

N = 2
M2,MT2,Mt2,M2T ,M2t

Tuesday, August 24, 2010
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BACKUPS
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Effect of ISR and UE
• ISR and UE destroy all these nice correlations…

– Calculate ISR from first principles and undo the effect
• What about UE?

– Use only reconstructed objects (e.g. jets instead of cal towers)
• MHT in place of MET

Konar, Kong, KM, Park 2010

Papaefsthatiou, Webber 2009
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Inclusive SUSY production
• The peaks in Smin mark the thresholds for the individual 

production subprocesses
• Example: GMSB point GM1b

– Lambda=80 TeV, M=160 TeV, N=1, tanb=15, mu>0

Konar, Kong, KM, Park 2010

Tuesday, August 24, 2010



MT2

Another MT2 method
• Basic idea: study MT2 distribution 

– of the two leptons only
– for any two test masses 
– for two different values of PT

KM,Moortgat,Pape,Park 2009

Old (kink) methodNew (our) method

Tuesday, August 24, 2010



Advantage of the new method
• The left branch 

endpoints are 
systematically 
underestimated

• We can pick both 
measurements to 
be on the right 
branch, which is 
measured much 
better

25
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ũ/d̃∗

χ̃+
1

χ̃+
1

ν̃!

ν̃!

χ̃0
1

χ̃0
1

MT2

#PT
d/ū
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$+ ν

ν

p

p

Mp Mc

FIG. 1: The typical SUSY event topology producing two iso-
lated same-sign leptons at point LM6 (see text for details).
The diagram for a pair of negatively charged leptons $−$− is
analogous.

Given this very general setup, we now pose the follow-
ing question: assuming that a SUSY discovery is made
in the inclusive same-sign dilepton channel, is it pos-
sible to measure the individual sparticle masses, using

only the transverse momenta of the two leptons !p (1)
!T and

!p (2)
!T , and the total upstream transverse momentum !PT ?

This is an important question for two very basic reasons.
First, given its undeniable advantages from an experi-
mental point of view, the inclusive same-sign dilepton
signature may very well provide the first hint of super-
symmetry. Second, virtually all of the classic methods
for SUSY mass determination would face a formidable
challenge with the simple topology of Fig. 1. In fact, to
the best of our knowledge, there have been no studies to
date of any SUSY mass measurements in the inclusive
same-sign dilepton channel.

Although it may appear that the two transverse lepton

momenta !p (i)
!T , i = 1, 2, do not provide a lot of informa-

tion to go on, we shall show that it is possible to measure
separately the mass Mp of the chargino parent and the
mass Mc of the sneutrino child involved in the leptonic
decays of Fig. 1. We discuss three different approaches.

Method I. Let us concentrate directly on the observed

lepton momenta !p (i)
!T . Consider the two collinear momen-

tum configurations illustrated in Fig. 2 and defined as fol-
lows. In each configuration, the lepton momenta are the

same: !p (1)
!T = !p (2)

!T ; and then they can be either parallel

or antiparallel to the measured upstream !PT :

s = +1 ⇒ !p (1)
!T = !p (2)

!T ↑↑ !PT ; (1)

s = −1 ⇒ !p (1)
!T = !p (2)

!T ↑↓ !PT . (2)

In what follows we shall use the integer s = +1 (s = −1)
to refer to the parallel (antiparallel) configuration. The
integer s simply indicates the angle (0 or π) between
any of the two lepton momenta and the upstream !PT :

s ≡ cos(!p (1)
!T , !PT ) = cos(!p (2)

!T , !PT ). Now let us measure
the maximum lepton momentum in each configuration:

p!T (sPT ) ≡ max
"p

(1)
!T

="p
(2)
!T

∧ cos("p
(1)
!T

,"PT )=s

{

p (i)
!T

}

. (3)

s = +1 s = −1

#PT
#PT

#p (1)
!T

#p (2)
!T

#p (1)
!T

#p (2)
!T

FIG. 2: The two special momentum configurations defined in
eqs. (1,2).

Observe that both p!T (+PT ) and p!T (−PT ) can be di-
rectly measured from the lepton pT distributions. For
example, construct a 2D scatter plot {x, y} of

x = cos(!p (1)
!T + !p (2)

!T , !PT ), y = |!p (1)
!T + !p (2)

!T |, (4)

with the cut |!p (1)
!T − !p (2)

!T | < ε (∼ 0), and take the limit

p!T (sPT ) = lim
x→s

(y

2

)

. (5)

Armed with the two measurements p!T (+PT ) and
p!T (−PT ), we can now directly solve for the masses Mp

and Mc. The formula for p!T (sPT ) (which was denoted
by µ(sPT ) in Ref. [8]) is

p!T (sPT ) =
M2

p − M2
c

4M2
p

(√

4M2
p + (sPT )2 − sPT

)

. (6)

Inverting (6), we get

Mp =

√

p!T (−PT ) p!T (+PT )

p!T (−PT ) − p!T (+PT )
PT , (7)

thus fixing the absolute mass scale in the problem. Once
the parent mass Mp is known, the child mass Mc is

Mc = Mp

√

1 − 2
p!T (−PT ) − p!T (+PT )

PT
. (8)

Eqs. (7) and (8) represent the main result in our first
method for sparticle mass determination. We managed
to find the true sparticle masses directly in terms of the
measured lepton momenta p!T (±PT ) and upstream mo-
mentum PT . Note that the choice of upstream momen-
tum PT in eqs. (7) and (8) is arbitrary. We can use this
arbitrariness to our advantage, e.g. by selecting the most
populated PT bin, thereby reducing the statistical error.

Method II. In our previous method, the lepton mo-
menta p!T (±PT ) were measured directly from the data
as implied by eq. (5). Alternatively, we can obtain them
indirectly from the endpoint of the Cambridge MT2 vari-
able [9]. To be more precise, we apply the “subsystem”
MT2 variable introduced in [8] to the purely leptonic sub-
system in the yellow-shaded box of Fig. 1. Following the
generic notation of Ref. [8], we denote the input (test)
mass of the sneutrino child as M̃c. The subsystem MT2

variable is now defined as follows. First form the trans-
verse mass MT for each (chargino) parent

M (i)
T ≡

√

M̃2
c + 2

(

|!p (i)
!T |

√

M̃2
c + |!p (i)

cT |2 − !p (i)
!T · !p (i)

cT

)

KM,Moortgat,Pape,Park 2009
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1-Dim MCT  method
KM,Park 2009

Longitudinal MCTTransverse MCT

MCTMCT|| =
�

m2
1 +m2

2 + 2
�
e1T||e2T|| + �p1T|| · �p2T||

�

MCT⊥ =
�
m2

1 +m2
2 + 2 (e1T⊥e2T⊥ + �p1T⊥ · �p2T⊥)
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1-Dim MCT  method
KM,Park 2009
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Generalized MT2 method

• Basic idea: test whether the two 
missing particles are the same 
– Neutrinos?
– Multi-component dark matter?

Konar,Kong,KM,Park 2009

Ridge methodISR invariance method Gradient method

Barr, Gripaios, Lester 2009
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