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¢ Introduction: Dark Matter properties
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gravitino and axino Dark Matter

¢ Stable axino and gravitino

¢ Unstable DM and indirect detection
¢ Signals at LHC...

¢ Outlook



DARK MATTER
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Current power spectrum P(k) [(h~! Mpc)3]
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Compare with the data:

mwpy > 4 keV
[Viel et al. ‘07]



WHY GRAVITINO/AXINO DM?

¢ To identity DM within gravity or the PQ sector,
solving the strong CP problem.

¢ Is based on supersymmetric extension, 1.e. very
theoretically attractive: gives gauge unification,
solves hierarchy problem, etc...

¢ Allows for coherent framework, with a vVery small
number of parameters, since (most) of the couplings

are hixed by symmetry.

¢ Relaxes the gravitino problem and possibly allows
for thermal leptogenesis...

¢ R-parity conservation is not strictly necessary...



SUPER/E-WIMPS

¢ Super/E-WIMPs like the gravitino and

axino are particles that are much more
weakly interacting than weakly, so there
1s no hope of direct detection.

¢ They are usually not a thermal relic since
if they are thermal their number density 1s

compatible only with Hot/Warm DM.

¢ Moreover they do not need to have an
exactly conserved quantum number to be
sufficiently stable...
Dark Matter may decay !!!



AXION ; STRONG CP problem = PQ symmetry [Peccei & Quinn 1977]
) QQCD el axion a J.E. Kim

Introduce a global U (1) p symmetry broken at f,, then 6 becomes the dynamical field a,
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Axion physics constrains 5 x 107 GeV< fq < 1077 GeV
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AXINO couplings equal mostly to those of the axion

AXINO mass depends on SUSY breaking : free parameter
Possibility of mixed axino/axion DM depending on f_a !



AXION and AXINO MODELS
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While the axion/axino couplings to QCD are model

independent, the couplings to matter, quarks and leptons,
and also Higgses, are model-dependent.



GRAVITINO properties: completely fixed by SUGRA !

Gravitino mass: set by the condition of “vanishing” cosmological constant

. :<W6K/2>:% M

It is proportional to the SUSY breaking scale and varies depending on the mediation mechanism, e.qg.
gauge mediation can accomodate very small (F'x ) giving m s ~ keV, while in anomaly mediation we
can even have m s ~ TeV (but then it is not the LSP...).

Gravitino couplings: determined by masses, especially for a light gravitino since the dominant piece
becomes the Goldstino spin 1/2 component: @DM a2 i\/ga“w

e
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Couplings proportional to SUSY breaking masses and inversely proportional to 15 !

VX RO* + h.c.

The gravitino gives us direct information on SUSY breaking






CAN THE AXINO/GRAVITINO
BE COLD DARK MATTER 7

YES, if the Universe was never hot enough
for axino/gravitinos to be in thermal equilibrium...

Very weakly interacting particles as the axino & gravitino
are produced even 1n this case, at least by two mechanisms
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CAN THE AXINO/GRAVITINO
BE COLD DARK MATTER 7

YES, if the Universe was never hot enough
for axino/gravitinos to be in thermal equilibrium...

Very weakly interacting particles as the axino & gravitino
are produced even 1n this case, at least by two mechanisms

PLASMA g % NLSP DECAY

SCATTERINGS OUT OF EQUILIBRIUM
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At high temperatures, the dominant gravitino production 1s
due to 2-to-2 scatterings with the gauge sector, mostly QCD:

1GeV Tr M, ¥
32 <m3/2 ) (1010 Ge\/> 2 (100 Ge\/>

(2

[Bolz, Brandenburg & Buchmuller 01],
[Pradler & Steffen 06, Rychkov & Strumia 07]

where M are the gaugino masses and ¢; ~ 0(1)

So 1n general there 1s always a bound on the reheat
temperature and such temperature has to take a specific value

in order to match the DM density. Note that the
smaller T3 Ok the smaller the temperature has to be.

Tension with thermal leptogenesis for small gravitino masses !



Similarly for the axino, but the couplings are not enhanced by

a small axino mass. Recently a new computation by Strumia
exploiting the similarity between axino & gravitino gives:

3 i 1011GeV )\ ?
R
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[ Strumia 10]

This includes a D-term contribution previously neglected and

the effect of (thermally massive) gluon decay.
This 1s a factor ~ 2-3 smaller than [ Brandenberger & Steften 04]

and nearly equal to our earlier one with a gluino thermal mass
introduced per hand [LC, HB Kim, JE Kim & Roszkowski 01].

Tension with thermal leptogenesis 1s stronger, especially
for large axino masses | Non-thermal leptogenesis ? H. Baer



UPPER BOUND ON T

[ Brandenburg & Steffen 04]
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UPPER BOUND ON T

[Brandenburg & Steffen 04]
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BBN BOUNDS ON NLSP DECAY

Neutral relics Charged relics

[Pospelov 05, Kohr1 & Takayama 06,

[...,Kohri, Kawasaki & Moro1 04] Cyburt at al 06, Jedamzik 07,...]
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EVEN WORSE FOR COLORED LSP

Colored relics: even stronger BBN bound state effects...
[Kusakabe Ka)mo Yoshlda, Mathews 09]
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A MATTER OF LIFETIME...

Due to the suppressed couplings, the NLSP decays slowly

into an axino/gravitino and a SM particle.
Consider a Bino neutralino NLSP and R-parity conservation.

What 1s its lifetime for axino or gravitino LSP?

For an axino LSP: e _a f 2
5 =025s(——L_) ( . >

100 GeV 101 GeV

For a gravitino LSP:

= —5H m, ~ 2
A e ( oy ) ( G )
B % : 100 GeV e

Quite different timescale, apart for large f_a or small

gravitino mass... Trouble for a gravitino heavier than 1 GeV |
[s there a way out ???



[LC, Hasenkamp, Roberts & Pokorski 09]
¢ In the CMSSM the neutralino NLSP is strongly

constrained and requires a gravitino mass < 1 GeV.
Check which regions are still open in the general case
and how light the gravitino has to be...

¢ One important parameter 1s the neutralino branching
ratio into hadrons e.g. via 3 body decay.

¢ The other important parameter for BBN constraints 1s
the : We compute it with Micromegas 2.0
by [Belanger et al. 06] 1n the general mixed case.

< We compare our results with the BBN bounds for neutral
relics given for the pure electromagnetic decays and also
for ditferent values of the hadronic branching ratios by
[K. Jedamzik 06]



hadronic branching ratio
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Reconsider the neutralino case in the most general terms:

Compute the hadronic branching ratio exactly, including the

contribution of intermediate photon, Z, Higgs and squarks....

The hadronic BR 1s always larger than 0.03, but for large

masses 1t can be suppressed by interference effects: photino I



BINO-HIGGSINO

[LC, Hasenkamp, Roberts & Pokorski 09]

4 HAD mgsz — 10GeV

The resonant annihilation into heavy Higgses becomes much
more effective & reduces the density by 4 orders of magnitude !
Gravitino masses of order ~ 70 GeV possible if 2 m, ~ M 4 /H



WINO-HIGGSINO

[LC, Hasenkamp, Roberts & Pokorski 09]
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The Wino case has even stronger annihilation and lower energy

density; apart for the resonance region, also a light Wino can allow
for 1-5 GeV gravitino masses thanks to low BR in hadrons...



Recently the full two-loop computation of the axino couplings

to sleptons-lepton and quark-squarks in the hadronic axion
models has been done by [ Freitas, Steften, Tajuddin & Wyler 09],

which 1s important for the stau NLSP decay:

4 4 2
n
1287 cos® Oy f2 mx

I'(Tp — 7Ta) =

at leading log, where the e.m. charge and mass of the heavy

quarks are €Q,YJaq respectively. It 1s suppressed by loop factors
and large powers of the coupling.

[t gives ~ 20% correction to the previous computation using an
effective one loop approximation [LC, L. Roszkowski, M. Small, 02]

This 1s important for computing the stau NLSP lifetime !



UPPER BOUND ON f,

For [Frglitas, Steffen, Tajluldldin & Wyler 09]
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More stringent than for neutralino NLSP H. Baer



OTHER WAYS OUT:

¢ Dilute the NLSP abundance with entropy production
[Buchmuller et al 05, Hamaguchietal 07...] J. Hasenkamp, F. Staub

¢ Reduce the NLSP number density via coannihilation
with the gluinos K. Turzynski

¢ Reduce the energy released during BBN by making
the gravitino mass degenerate with the NLSP  O. Vives

¢ Choose a relatively harmless NLSP, e.g. sneutrino
|[LC & Kraml 07, Santoso et al. 08, ...]

¢ Make the NLSP lifetime shorter:
heavy(er) NLSP or light(er) gravitino LLSP or breaking
R-parity and allowing the NLSP decay to SM.
But then the (axino)/gravitino DM is unstable !!!
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DECAYING DM

¢ The flux from DM decay in a species 11s given by

" didlV,

1

b, F) =

Particle Physics

¢ Very weak dependence on the Ha

Topm AE dmmpy Ji s

Halo property

parameter 1s the DM lifetime...

¢ Spectrum 1n gamma-rays
given by the decay channel!

Smoking gun: gamma line...

@ Galactic/extragalactic signal
are comparable...
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DECAYING AXINO/GRAVITINO?

¢ If R-parity 1s broken the NLSP decays fast to SM

particles, but axino & gravitino are much longer-lived

010" (i) (o) (i)
z 10 100GeV /) \10GeV

7 2
Twmz?s( 5 )‘2 ke ( dy )‘3 Ja
& 10—10 100GeV 10GeV 1011GeV

¢ For bilinear R-parity breaking, they decay similarly

to gauge boson/Higgs and neutrino
[ Takayama & Yamaguchi 00, Buchmuller et al '07, LC & JE Kim 09]
For trilinear R-parity breaking, the 3-body decays into

leptons can dominate and give a leptophilic DM
[Bomark et al 09, LC & JE Kim 09]



GRAVITINO DM WITHOUT R_P

| Buchmuller, Ibarra, Shindou, Takayama, Tran 09]
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BELOW M W ALSO 3-BODY

|[K-Y. Choi et al. 10]
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For bilinear R-parity breaking, the gravitino decays mostly into
lepton and gauge boson... Below the W/Z threshold though,
also the 3-body decay via virtual W/Z are important because

the photon channel can be suppressed... [K-Y. Choi & Yaguna 10]

Ditferent decays for the trilinear Rp-breaking case



FERMI LINE CONSTRAINTS

[from S. Murgia @ GGI-2010]
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The FERMI space telescope looks for lines in the galactic emissions
in the energy range 30-200 GeV and gives the stronger

constraint for gravitinos below 400 GeV:

From the FERMI gamma-line search: 7 < 5 10%%s @ 95% CL



HEAVY DECAYING DM

For heavy decaying DM, the atmospheric neutrino background
i1s large, but still the signal 1s detectable at km3 detectors like
IceCube, esp. if showers may be measured:

[LC Grefe, Ibarra & Tran 09]
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Best signiﬁcance for cascade/shower events
Possible to detect in IceCube ?
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Axino: The NLSP can have a large range of lifetimes, but 1t
always decays outside the detector since f, > 5 x 10° GeV -

Gravitino:The decays happen within the detector for gravitino
masses of 10 keV. Nevertheless thank to the sizable fraction of

boosted NLSP it may be possible to reach even 0.1-1 MeV.
[ [shiwata, Ito & Moroi1 08]

For bilinear R-parity breaking the Fermi limit gives a lower

bound on the track length as 30 cm for a neutralino NLSP,
but no definite prediction for stau NLSP...

[ Bobrovskyi, Buchmuller, Hajer & Schmidt 10]

Possible perhaps to observe such (prompt) decays at the
LLHC even with early data



LHC: MISMATCH IN Qpah??

For a neutralino NLSP,

llgh S Higgsino [ Baltz, Battaglia, Peskin & Wizanski ‘06]
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Possible for both axino and gravitino with a variety of NLSPs:
in that case it will be obvious that the particle must decay !

The observation depends on the nature of the NLSP:
it may be stopped in some part of the detector (gluino),

or flight through as a heavy muon (stau).
The experiments are developing strategies for detection

Next step: collect sufficient metastable NLSP and measure
and check their decay channel !

[Hamaguchi et al 04-06, Feng & Smith 04, Arvanitaki et al 05....]
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[ Buchmuller et al 04, Brandenburg et al 05]

Look at the angular distribution

in the radiative decay and/or
its branching ratio

Gravitino LSP Scenario
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OUTLOOK

¢ The axino and the gravitino are good DM candidates,
with similar properties. For both cases the reheat
temperature 1s bounded and BBN constrains the

litetime and density of the NLSP.

¢ The bounds on neutralino NLSP in the gravitino case
can be relaxed a bit in the general case, and allow to reach
gravitino masses ~ 10 GeV

¢ Axino/Gravitinos can survive as DM also for broken
R-parity, but the breaking has to be suppressed. Indirect

DM searches already set limits on the parameters.

¢ Diufferent signals are possible at the LHC: displaced

vertices, missing energy or metastable charged particles

We could be very near to identity DM...



