

<u>Recent Results On Searches</u> <u>From CMS</u>

Maurizio Pierini CERN

Wednesday, August 25, 2010

• We search for quark contact interactions and dijet resonances (s-channel):

Limit on Heavy Resonances

SEN

Centrality Ratio

Wednesday, August 25, 2010

Wednesday, August 25, 2010

Approximate Bethe-Bloch formula before minimum

collected with a minimum bias trigger. The two band

Highly penetrating particles

- track+muon (muon-like signature, e.g. 100-300 Cermersenstau)
- track-only (e.g. 130-900 GeV gluino R-hadron)

Trigger strategy:

- track+muon: Muon pT>3 GeV, DoubleMuon
- track-only: Jet pT>50 GeV, MET>45 GeV

Selection:

- Select Tracks on pT and dE/dx tails
- Tight selection for signal box
- Loose selection to cross-check bkg estimate
- Count events in bins of η and Nhits

Mass determination

- Approximate Bethe-Bloch formula
- Parameters fixed by fit to protons

Wednesday, August 25, 2010

Stopping Particles Strategy

Dedicated calorimetry trigger for no-collision

 Comparison
 Filled bunches during LHC fills

 - Beam presence vetoed at HLT (BPTX/BX veto)

Detailed study of background

- Cosmics & Noise rejection defined during 2008/2009 Cosmics runs
- Beam background study during 900 GeV and 7 TeV (low lumi)
- 17% efficient on signal (R-hadrons)

Lifetime [s]	Expected Background (\pm stat \pm syst)	Observe	ed
1e-07	$0.15 \pm 0.04 \pm 0.05$	0	
1e-06	$1.8\pm0.5\pm0.5$	0	
1e-05	$11.7 \pm 3.2 \pm 3.5$	8	
1e-04	$28.3 \pm 7.8 \pm 8.5$	19	
1e-03	$28.3 \pm 7.8 \pm 8.5$	19	
1e+03	$28.3 \pm 7.8 \pm 8.5$	19	
1e+04	$28.3\pm7.8\pm8.5$	19	
1e+05	$28.3 \pm 7.8 \pm 8.5$	19	
1e+06	$28.3 \pm 7.8 \pm 8.5$	19	

Selection Criteria	Background Rate (Hz)	
L1+HLT (HB+HE)	3.27	
Calorimeter noise filters	1.12	
BPTX/BX veto	1.11	1
muon veto	$6.6 imes 10^{-1}$	
$E_{jet} > 50 \text{ GeV}, \eta_{jet} < 1.3$	$7.6 imes 10^{-2}$	
$n_{60} < 6$	$7.6 imes 10^{-2}$	
$n_{90} > 3$	$3.1 imes 10^{-3}$	
$n_{phi} < 5$	$1.3 imes10^{-4}$	
$R_1 > 0.15$	$1.1 imes 10^{-4}$	-
$0.1 < R_2 < 0.5$	$8.5 imes10^{-5}$	
$0.4 < R_{peak} < 0.7$	$7.9 imes 10^{-5}$	3
$R_{outer} < 0.1$	6.9×10^{-5}	-

Counting Experiment in lifetime bins No Signal observed

Model-Independent Results

Model-Dependent Limits

Result translated into a **<u>xsection limit</u>** - Assumed models for stopping probability ("cloud model," "EM only", "Neutral R-Hadron") BR(ğ - Used $m_{\tilde{g}} = 200 \text{ GeV}$ and $m_{\tilde{X}0} = 100 \text{ GeV}$ x - Included time-profile analysis (dot lines) ر(pp → ĝĝ) to improve the sensitivity for $\tau_{\tilde{g}} < 100$ ns - Excluded lifetime range 120 ns $< \tau_{\tilde{g}} < 6 \ \mu s$ [dn] (کو 10⁴ 95% C.L. Limits CMS Preliminary 2010 Expected: 2.6 us Counting Exp. Expected $\pm 1\sigma$: 2.6 µs Counting Exp. L dt = 203-232 nb Expected $\pm 2\sigma$: 2.6 µs Counting Exp. Obs.: 10^6 s Counting Exp. Obs.: $100 \ \mu s - 1$ hr Counting Exp. $\sqrt{s} = 7 \text{ TeV}$ <u>g</u>g) × BR(g Obs.: 2.6 us Counting Exp. m_≈ - M_{≈⁰} = 100 GeV 10² Obs.: 200 ns Timing Profile 10 a(pp → NLO+NLL 10⁻¹ 500 450 150 200 250 350 400 100 300 $m_{\tilde{a}}$ [GeV]

Result translated into a mass limit

- Fixed $m_{\tilde{g}}$ - $m_{\tilde{X}0}$ = 100 GeV
- Fixing lifetime
- No sensitivity below 150 GeV (efficiency drop) where LEP limits on m_{X0} applies
- Time profile (τ = 200 ns): $m_{\tilde{g}}$ > 229 GeV
- Counting ($\tau = 2.6 \ \mu s$): $m_{\tilde{g}} > 225 \ GeV$

Physics Objects (MET, Jets, leptons) commissioned for general CMS use (see plenary talk by C. Sander)

SUSY commissioning focused on specific tools for searches

- Bkg discriminating variables (e.g. α_T , $\Delta\Phi(MHT, MPT)$)
- Data-driven strategies for QCD background estimate

Use the first data as a QCD control sample

Huge effort ongoing to understand the SM backgrounds with data. - A few highlights in the next slides

)R<0.3

 $\mathbf{RI} = \underline{\sum}(\mathbf{p}_{\mathbf{T}}^{\mathbf{Calo} + \mathbf{Trk}})$

 $\mathbf{p_T}(\mathbf{e})$

Test background estimate strategy with W

- Invert analysis cuts & fit Relative Isolation
- Prediction bkg events vs observed

Control sample (loose lepton ID and isolation) \rightarrow efficiency other requirements

Monitor Tight-to-Loose efficiency ratio using different jet samples vs pT

ERSITY of **DRIDA**

UF FLORIDA

Dijet Analysis

- CMS is already exploring new territory beyond the Tevatron
- Already competitive/better than Tevatron. Further improvements with more data
- The Tevatron limit of $\Lambda > 2.8$ TeV (D0, 1 fb⁻¹) is expected to be surpassed with 4 pb⁻¹.
- Hopefully, more than exclusions in the future...

With 100 pb⁻¹ of 7TeV data (end of the year?)

CMS will enter an unexplored territory, beyond what Tevatron could test. Sensitivity depends on SM background understanding - improvements on data-driven method will reduce the errors and will

Conclusions

CMS is happening

- Detector behaving as expected (good data-MC agreement)
- First Results on searches presented here

DiJet mass spectrum and centrality analyses

- First limits on Resonances and contact interactions
- Improved Tevatron limits on DiJet Resonances with 0.8 pb⁻¹
- Expect to extend Tevatron limits on Contact Interactions with O(4 pb⁻¹)

Long-Lived Heavy particles

- Track-only analysis => exclude gluino below 271 GeV
- Track+muon analysis => exclude gluino below 284 GeV
- Stopped Particles for 120 ns < τ < 6 μ s, exclude gluinos of mass up to 200 GeV
- Stopped Particles for lifetimes of 2.6 $\mu s,$ exclude gluinos of mass up to 225 GeV
- Stopped Particles for lifetimes of 200 ns, exclude gluinos of mass up to 229 GeV

SUSY Commissioning started

- QCD Bkg estimates and data-MC agreement tested on data

References

• Search for Dijet Resonances in the Dijet Mass Distribution in pp Collisions at $\sqrt{s} = 7$ TeV

http://cdsweb.cern.ch/record/1280687/files/EXO-10-001-pas.pdf

• Search for New Physics with the Dijet Centrality Ratio

http://cdsweb.cern.ch/record/1280688/files/EXO-10-002-pas.pdf

• First Results on the Search for Stopped Gluinos in pp collisions at $\sqrt{s} = 7 \text{ TeV}$

http://cdsweb.cern.ch/record/1280689/files/EXO-10-003-pas.pdf

- Search for Heavy Stable Charged Particles in pp collisions at $\sqrt{s} = 7$ TeV <u>http://cdsweb.cern.ch/record/1280690/files/EXO-10-004-pas.pdf</u>
- Performance of Methods for Data-Driven Background Estimation in SUSY Searches
 <u>http://cdsweb.cern.ch/record/1279147/files/SUS-10-001-pas.pdf</u>

...and a Dedication

Nicola Cabibbo: 1935–2010

Wednesday, August 25, 2010

Solve the problem of simulating long lifetimes by factorising into 3 phases :

- 1. R-hadron production, interaction with detector, and map stopping points
- 2. Decay stopped R-hadron and simulate interaction of decay products with detector
- Simulate time of production (based on *delivered* luminosity profile), time of decay and calculate "time acceptance"

- Search performed in HCAL (highest probability)

Stopping Particles Simulation