B Physics - Status and Prospects

Ulrich Uwer

Heidelberg University

1

SUSY 2010

Bonn, August 2010

B Physics

b hadrons:

• Tree level decays CKM suppressed.

d

 \overline{s}

 K^{0*}

Loop corrections important

 B^0

Precision test of CKM sector & search for New Physics

Experiments

B factories at Y(4S)

next step: SuperKEKB & SuperB

TEVATRON

- ~9 fb⁻¹ for each experim. (up to 6 fb⁻¹ analyzed)
- data-taking w/ ~2 fb⁻¹ / y

 $\frac{10^{-1}}{10^{-1}}$ ~3 ×10¹¹ BB until 2011 (1fb⁻¹)

- Status of the CKM Metrology (B_d and B_u)
- New Results in the B_s sector
- Search for New Physics in penguin and very rare decays
- First B results from LHCb

CKM Metrology – B_d and B_u

Status of CKM Phases

$$\beta = 21.1^{\circ} \pm 0.9^{\circ} \sin 2\beta = 0.673 \pm 0.023 \quad (\pm 3.5\%)$$

$$\alpha = (89^{+4.4}_{-4.2})^{\circ} \qquad \text{HFAG WA}$$

$$\gamma = (73^{+19}_{-24})^{\circ}_{CKMfit} \text{ or } \gamma = (74 \pm 11)^{\circ}_{UTfit} \quad \text{updated}$$

Measurement of γ

GLW: Gronau-London, PL B253, 483 (1991); Gronau-Wyler, PL B265, 172 (1991) ADS: Atwood-Dunietz-Soni, PRL 78, 3257 (1997) GGSZ: Giri et al, PRD 68, 054018 (2003)

Interference \rightarrow CP violation $\rightarrow \gamma$

ADS: D⁰ decays suppressed (K⁺ π ⁻) GLW: D⁰ decays to CP state ($\pi\pi$,KK) GGSZ: D⁰ decays to K_s $\pi\pi$ (Dalitz)

All methods statistically limited: very small branching fractions

$$GGSZ: \quad \gamma = (68 \pm 14_{stat} \pm 4_{syst} \pm 3_{model})^{\circ}$$

GGSZ: $\gamma = (78.4^{+10.8}_{-11.6\,stat} \pm 3.6_{svst} \pm 8.9_{model})^{\circ}$

arXiv: 1005.1096 468 M BB

arXiv: 1003.3360 644 M BB

Combined sensitivity:S. Haines, ICHEP 201010

1 fb⁻¹ :
$$\sigma_{stat}(\gamma) = 6...8^{\circ}$$

10 fb⁻¹ : $\sigma_{stat}(\gamma) = 2...3^{\circ}$

| V_{c(u)b} | from semileptonic B decays

$$\Gamma(B \to X_{c(u)} \ell \nu) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{c(u)b}|^2 [1 + A_{ew}] \times A_{QCD}$$

 \Rightarrow $|V_{cb}|$ and $|V_{ub}|$

Inclusive: Distributions for $b \rightarrow q lv$ events Operator Product Expansion in α and Λ/m_b

Exclusive: Measure single channel $B \rightarrow X I v$ Form factor (e.g. from Lattice QCD)

Theoretical uncertainties different.

combined effort of theory and experiment

|V_{cb}| from semileptonic Decays

Inclusive determination of |V_{ub}|

$|V_{ub}|$ from $B \rightarrow \pi I \nu$

	Belle (ICHEP 2010, 605 fb ⁻¹)	BABAR (arXiv:1005.3288, 37	77 M BB)
BF =	$(1.49 \pm 0.04 \pm 0.07) \times 10^{-4}$	$(1.41 \pm 0.05 \pm 0.07) \times 10^{-4}$	
$ V_{ub} =$	$(3.64 \pm 0.11 \begin{array}{c} +0.60 \\ -0.40 \end{array}) \times 10^{-3}$	$(3.63 \pm 0.12 \begin{array}{c} +0.59 \\ -0.40 \end{array}) \times 10^{-3}$	LCSR (q²<16)
	$(3.55 \pm 0.13 + 0.62 - 0.41) \times 10^{-3}$	$(3.21 \pm 0.17 \stackrel{+0.62}{_{-0.41}}) \times 10^{-3}$	HPQCD (q²>16)
	(3.43 ± 0.33) ×10 ⁻³ ±10%	(2.95 ± 0.31) ×10 ⁻³	FNAL/MILC (full a ²)

For comparison: $|V_{ub}|_{incl} = (4.37 \pm 0.16_{exp} \pm 0.20_{th}) \times 10^{-3}$ (larger)

$B^+ \rightarrow \tau^+ \nu$ decays

New

$$BR(B \to \tau \nu) = (1.54^{+0.38}_{-0.37}(stat.)^{+0.29}_{-0.31}(syst.)) \times 10^{-4}$$
 semilept. tags
657 M BB

$$BR(B \to \tau \nu) = (1.80^{+0.57}_{-0.54} (stat.) \pm 0.26 (syst.)) \times 10^{-4}$$
 hadronic tags
ICHEP 2010 468 M BB

Results from B $\rightarrow \tau v$

Average
$$B(B \rightarrow \tau \nu) = (1.68 \pm 0.31) \times 10^{-4}$$
Trabelsi,Theory $B(B \rightarrow \tau \nu) = (1.20 \pm 0.25) \times 10^{-4}$ ICHEP 2010using f_B (HPQCD), $|V_{ub}|$ incl. HFAG

Global CKM Fit

http://ckmfitter.in2p3.fr/

All measurements agree within $\pm 1\sigma$ with fit results except: sin2 β with a 2.6 σ tension and *B*(B $\rightarrow \tau \nu$) with 2.8 σ tension.

B_s Sector

 $\phi_{s}^{SM} = -2\beta_{s} \approx -0.04 \quad V_{ts} = |V_{ts}|e^{i\beta_{s}} \qquad \text{NP:} \quad \phi_{s} = \phi_{s}^{SM} + \phi^{\text{NP}}$

Mixing Phase ϕ_s from $B_s \rightarrow J/\psi \phi$

Prospects for B_s \rightarrow J/\psi \phi at LHCb

CP Violation in Mixing

$$\boldsymbol{a}_{sl}^{q} \equiv \frac{\Gamma(\overline{B}_{q}^{0} \to \mu^{+} X) - \Gamma(B_{q}^{0} \to \mu^{-} X)}{\Gamma(\overline{B}_{q}^{0} \to \mu^{+} X) + \Gamma(B_{q}^{0} \to \mu^{-} X)}; \quad \boldsymbol{q} = \boldsymbol{d}, \boldsymbol{s}$$

$$A_{sl}^{b} = (0.506 \pm 0.043)a_{sl}^{d} + (0.494 \pm 0.043)a_{sl}^{s} \qquad a_{sl}^{q} = \frac{\Delta \Gamma_{q}}{\Delta m_{q}} \tan \phi_{q}$$

 $A_{sl}^{b,SM} = (2.3^{+0.5}_{-0.6}) \times 10^{-4}$ A. Lenz, U. Nierste, 2007

Can be enhanced by New Physics:

$$\phi_q = \phi_q^{SM} + \phi_q^{NP}$$

Two methods to determine A_{sl}

Large correlation between backgr. related uncertainties between both methods

Evidence of anomalous CP-violation in mixing of neutral B mesons.

Final A_{sl} result

Compatibility with ϕ_s

For interpretation of the result, see talk by U. Nierste.

Prospects at LHCb

Golutvin, ICHEP 2010

Inclusive method at LHCb due to the prod. asymmetry in pp collisions ($\sim 10^{-2}$) difficult.

⇒ t-dependent asymmetry difference of semileptonic B decays: $B_s \rightarrow D_s(KK\pi)\mu\nu$ and $B^0 \rightarrow D^+(KK\pi)\mu\nu$

$$\Delta A_{sl} = \frac{a_{sl}(B_s) - a_{sl}(B_d)}{2}$$

(allows simultaneous fit of prod. asymm.)

Stat. Error	100 pb ⁻¹	1fb ⁻¹		
ΔA_{fs} (D μv)	2 x10 ⁻³	6.3 x10 ⁻⁴		

 Provide constrain "orthogonal" to recent D⁰ measurement

Penguin and very rare FCNC decays

$B \rightarrow X_s \gamma$

Inclusive measurement:

• Untagged / semilept. tags (2nd B)

for $E_{\gamma} > 1.7 \,\text{GeV}$ $B = (3.45 \pm 0.15 \pm 0.40) \times 10^{-4}$ PRL 103 (2009) 241801, 605 fb⁻¹

Standard Model

B(B→X_s
$$\gamma$$
) = (3.15 ± 0.23)× 10⁻⁴
(E _{γ} > 1.6 GeV)
M. Misiak et al. PRL 98 (2007) 022002

Average (HFAG) $(E_{\gamma} > 1.6 \text{ GeV})$

 $B(B \rightarrow X_s \gamma) = (3.55 \pm 0.26) \times 10^{-4}$

Charged Higgs (2HDM-II) bound: $M_{H+} > 300 \text{ GeV} (95\% \text{ CL})$ $B^0 \rightarrow K^* \mu \mu$

Standard Model

Effective Theory

Operator Product Expansion $\mathcal{H}_{eff} = -4 \frac{G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum C_i(\mu) O_i(\mu)$

Corresponding Wilson coefficients C_i describe short-range physics. New Physics in Wilson coefficients $C_i = C_i^{SM} + C_i^{NP}$ or new operators.

NP Sensitivity of Angular Observables

Angular observables offer a powerful test bench for any New Physics model

Status A_{FB} of $B^0 \rightarrow K^* \mu \mu$

LHCb Sensitivity for 1 fb⁻¹

Very Rare Decays - B_{d,s} \rightarrow \mu \mu

• L = 3.7 fb⁻¹

- Several discriminating variables in NN to improve background reject.
- Limits calculated in several Bins of NN out and $M_{\rm uu}$

$$Br(B_{s} \to \mu^{+}\mu^{-}) < 4.3 \times 10^{-8} (95\% \text{ C.L.})$$

$$Br(B_{s} \to \mu^{+}\mu^{-}) < 7.6 \times 10^{-9} (95\% \text{ C.L.})$$

CDF Public note 9892

- L = 6.1 fb⁻¹
- Baysian NN instead of likelih. ratio
- Limits calculated in several Bins of BNN out and $M_{\mu\mu}$

 $Br(B_s \to \mu^+ \mu^-) < 5.1 \times 10^{-8} (95\% C.L.)$

arXiv:1006.3469

Expect: < 6×10⁻⁸ (90% CL) 1fb⁻¹

First B results from LHCb

$B \rightarrow J/\psi K^+$

J/ψ(μμ) +X events

LHCb ICHEP 2010

B fraction $f_b = (11.1 \pm 0.8)$ %

 σ (J/ ψ from b, p_T J/ ψ <10 GeV/c, 2.5<yJ/ ψ <4) = 0.81 ± 0.06 ± 0.13 µb

extrapolation using Phytia

 $\sigma(pp \rightarrow H_b X; 2 < \eta_b < 6) = 84.5 \pm 6.3 \pm 15.6 \ \mu b$

bb cross section from B \rightarrow D^{(*)} \mu \nu X

Average of 3		η	LHCb preliminary		Theory 1	Theory2		
measurements	\rightarrow	2-6	77.4	4.0	11.4 µb	89	70	assumed
		all	292	15	43 µb	332	254	~250 µb

Theory 1: Nason, Dawson, Ellis Theory 2: Nason, Frixione, Mangano and Ridolfi

Conclusion & Outlook

• CKM mechanism identified as primary source for CPV in the quark sector. Within uncertainties, there is still room for NP.

Tensions (2.6 σ for sin2 β and 2.8 σ for $B \rightarrow \tau \nu$) in the CKM fits.

 B_s sector: SM deviation observed previously for B_s mixing phase becomes less significant. Errors are very large.

Hint for NP: D0 observes anomalous large CPV in mixing.

- "Discovery channels" $B \rightarrow K^* \mu \mu$ and $B \rightarrow \mu \mu$ are limited by statistics.
- LHCb has exciting prospects for 1 fb⁻¹ data sample expected for 2011:
 First results confirm LHCb trigger & detector concept and simulation.